添加标题第七章 分布检验和拟合优度检验第一节 K-S单样本检验其中 F0(x)是完全已知的分布函数即不含未知参数H0:F(x)=F0(x)??H1:F(x)≠F0(x)假设X1…Xn取自总体 F(x) 我们感兴趣的检验问题为:Glivenko于上世纪初证明了:这个结论启示我们对于上面的检验问题可以用统计量 由Glivenko定理知当原假设H0成立时统计量Dn的值应很小而当H1成立时Dn的值倾向
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级第八章 分布检验和拟合优度 检验主要内容:8.1 Kolmogrov-Smirnov单样本检验及一些正态性检验8.2 Kolmogrov-Smirnov两样本分布检验8.3 Pearson 拟合优度检验 当拿到一列数据后希望知道它的总体分布是不是一个已知的分布以便为下一步的统计决策作准备核对某些方法对总体
ch3-§3.5 分布假设检验§3.5分布检验前几节介绍的检验法都是在母体分布为已知的前提下进行讨论的. 而实际问题中有时并不能预知母体服从什么分布 这时就需要检验母体分布的各种假设.1分布假设检验对母体分布作某假设用母体的一个子样来检验该假设是否成立分布假设检验亦称拟合优度检验检验观察到的一批数据是否与某种理论分布符合.称2分类