《工程数学》模拟试题 2011.4.22.Created with an evaluation copy of Aspose.Words. To discover the full versions of our APIs please visit: :products.asposewordsPAGE Created with an evaluation copy
下 页
习题二1.化下列矩阵为Smith标准型:(1)(2)(3)(4).解:(1)对矩阵作初等变换则该矩阵为Smith标准型为(2)矩阵的各阶行列式因子为从而不变因子为故该矩阵的Smith标准型为(3)对矩阵作初等变换故该矩阵的Smith标准型为(4)对矩阵作初等变换在最后的形式中可求得行列式因子于是不变因子为故该矩阵的Smith标准形为.2.求下列矩阵的不变因子:(1)(2)(3)(4).解:(
习题一1.检验以下集合对于所指的线性运算是否构成实数域的线性空间:(1)设是阶实数矩阵.的实系数多项式的全体对于矩阵的加法和数乘 (2)平面上不平行于某一向量所组成的集合对于向量的加法和数与向量的乘法(3)全体实数的二元数列对于如下定义的加法和数乘运算:(4)设是一切正实数集合定义如下加法和数乘运算:其中(5)二阶常系数非齐次线性微分方程的解的集合对于通常函数的加法和数乘(6)设中元素对于通
习题一1.检验以下集合对于所指的线性运算是否构成实数域的线性空间:(1)设是阶实数矩阵.的实系数多项式的全体对于矩阵的加法和数乘 (2)平面上不平行于某一向量所组成的集合对于向量的加法和数与向量的乘法(3)全体实数的二元数列对于如下定义的加法和数乘运算:(4)设是一切正实数集合定义如下加法和数乘运算:其中(5)二阶常系数非齐次线性微分方程的解的集合对于通常函数的加法和数乘(6)设中元素对于通
1求Householder矩阵H使得除Hx的第一个分量以外的其余分量都为零function[HHX]=Householder(X)n=size(X)nX=norm(X2)xigema=nXsign(X(1))rou=xigema(xigemaX(1))miou=[xigemazeros(1n-1)]XE=eye(nn)c=2mioumiouH=E-c(norm(miou2)2)HX=HXendX=
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级第二章 矩阵运算及其应用 2.1 矩阵的加减乘法2.2 矩阵的逆2.3 矩阵的分块2.4 初等矩阵2.5 应用实例2.6 习题2.1 矩阵的加减乘法2.1.1 矩阵的加法定义2.1 设有两个同型的 矩阵 矩
正交矩阵及其应用The orthogonal matrix and its applicalion 专 业: 数学与应用数学作 者: 指导老师: 学校二○一 Created with an evaluation copy of . To discover the full versions of our APIs please
矩阵的正定性及其应用摘 要:矩阵的正定性是矩阵论中的一个重要概念本文主要讨论主要阐述的是实矩阵的正定性以及应用.本文在介绍实矩阵的正定性的定义及其判别方法后简单的举了一些实例来阐述实矩阵正定性的应用.全文分两章在第一章矩阵的正定性的定义.在第二章正定性矩阵的判别方法在本文的最后给出了几个正定性矩阵的应用实例. 一二次型有定性的概念定义1 具有对称矩阵之二次型(1) 如果对任何非零向量 都有 (
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级广义逆矩阵及其应用0940503205 成芳娟20224181广义逆矩阵及其应用广义逆矩阵的定义广义逆矩阵的求法广义逆矩阵的应用20224182广义逆矩阵的定义11956年Penrose 广义逆定义定义(1)AXA=A (2)XAX=X (3)(AX)=AX (4)(XA)=XA则满足(1)
违法有害信息,请在下方选择原因提交举报