数列专题之(一)递推公式求通项累加法适应于= f(n) f(n)可为关于n的一次函数指数函数或分式函数(裂项)2累积法3最简单的类型当0且1且 0时通过待定系数法配凑为(也可直接用迭代得)4f(n)为关于n的一次函数例1在数列{}中=1求通项.(方法一)解:时两式相减得令=则=32利用类型3的方法得即=再用类型一的累加法得=()经检验也满足(方法二待定系数法)解:令(注意3为的系数)展开得与 比较
求递推数列通项的特征根法一形如是常数)的数列 形如是常数)的二阶递推数列都可用特征根法求得通项其特征方程为…① 若①有二异根则可令是待定常数) 若①有二重根则可令是待定常数) 再利用可求得进而求得例1 已知数列满足求数列的通项解:其特征方程为解得令由得 例2已知数列满足求数列的通项解:其特征方程为解得令由得 二形如的数列 对于数列是常数且)
高考递推数列题型分类归纳解析 各种数列问题在很多情形下就是对数列通项公式的求解特别是在一些综合性比较强的数列问题中数列通项公式的求解问题往往是解决数列难题的瓶颈本文总结出几种求解数列通项公式的方法希望能对大家有帮助类型1 解法:把原递推公式转化为利用累加法(逐差相加法)求解例:已知数列满足求解:由条件知:分别令代入上式得个等式累加之即所以变式:(2004全国I个理22.本小题满分
数列递推式求解数列通项公式法例 已知无穷数列的前项和为并且求的通项公式PS:当同时出现与时该如何处理归纳猜想法:由数列前几项用不完全归纳(并不严谨)猜测出数列的通项公式再利用数学归纳法证明其正确性这种方法叫归纳法.例 已知数列中求数列的通项公式.【解析】:猜测再用数学归纳法证明.(略)三 累加法:利用求通项公式的方法称为累加法累加法是求型如的递推数列通项公式的基本方法(可求前项和).例 已知无穷数
#
#
巧用构造法求递推数列的通项公式蒋明权利用递推数列求通项公式在理论上和实践中均有较高的价值自从二十世纪八十年代以来一直是全国高考和高中数学联赛的热点之一本文想介绍一下利用构造法求递推数列的通项公式的方法和策略希望能抛砖引玉一构造等差数列法例1. 在数列{an}中求通项公式an解:对原递推式两边同除以可得:①令 ②则①即为则数列{bn}为首项是公差是的等差数列因而代入②式中得故所求的通项公式是二
Evaluation Only. Created with Aspose.Words. Copyright 2003-2022 Aspose Pty Ltd.求递推数列通项公式的常用方法 绍兴一中 求递推数列通项公式是数列知识的一个重点也是一个难点高考也往往通过考查递推数列来考查学生对知识的探索能力求递推数列的通项公式一般是将递推公式变形推得原数列是一种特殊的
#
三大类递推数列通项公式的求法 一、一阶线性递推数列求通项问题一阶线性递推数列主要有如下几种形式:1这类递推数列可通过累加法而求得其通项公式(数列{f(n)}可求前n项和) 当为常数时,通过累加法可求得等差数列的通项公式.而当为等差数列时,则为二阶等差数列,其通项公式应当为形式,注意与等差数列求和公式一般形式的区别,后者是,其常数项一定为0.2这类递推数列可通过累乘法而求得其通项公式(数列{g
违法有害信息,请在下方选择原因提交举报