解析几何的认知及其在代数中的一些应用摘要:解析几何是代数的工具同时解析几何也为代数提供具体的实例模型因此它们是不可分割紧密联系的代数中的某些问题如果使用常规的解题方法其过程可能相当复杂但如果巧用解析几何的方法则问题的解决会变得非常简单而通过几何学习我们可以养成一种用几何图形来看待一些代数问题的思维习惯这样是把复杂的问题转换成具体形象的几何想象或者如平常人们所说的几何直觉这是我们学好数学甚至是
解析几何中的对称问题及其应用点关于点的对称:理论基础:点关于的对称点为即是的中点特别是中点的应用比较广泛中点也就是对称的另一种说法而已例 1 已知平行四边形的四个顶点坐标分别为 求的值方法一:利用斜率相等方法二:利用对角线互相平分方法三:利用向量相等答案:练习 1 已知矩形的两个顶点且它的对角线的交点在轴上求的坐标方法一:设对角线中点利用邻边垂直方法二:设对角线中点利用对角线相等且互相平分方法三:
导数思想在解析几何的一个简单应用导数隶属于函数内容看似与解析几何毫无关联但是导数的几何意义是切线斜率我们常用求导的方法求解函数的切线而某些曲线方程本身是函数解析式或者曲线某一部分能够写成函数解析式因此求曲线的切线问题也可以理解成求函数切线问题下面通过几道例题来说明导数在解析几何中的应用:例1(07安徽)过点作抛物线的切线求切线方程解:设切点 由知抛物线在点处的切线斜率为故所求切线方程为 即
#
2011高考专题:解析几何常规题型及方法一高考风向分析:高考解析几何试题一般共有3--4题(1--2个选择题 0--1个填空题 1个解答题) 共计20多分 考查的知识点约为20个左右其命题一般紧扣课本 突出重点 全面考查选择题和填空题考查直线 圆 圆锥曲线中的基础知识大多概念性较强小巧灵活思维多于计算而解答题重点考查圆锥曲线中的重要知识点及其综合运用重在考察直线与圆锥曲线的位置关系轨迹方程以
§ 向量在解析几何中的应用 例1:△ABC中AB两点的坐标分别为(-42)(31)O为坐标原点已知=且直线的方向向量为=(12)求顶点C的坐标例2:已知(0为坐标原点动点M满足 (1)求点M的轨迹C (2)若点PQ是曲线C上的任意两点且求的值例3:已知:过点A(01)且方向向量为的直线l与⊙C:(x-2)2(y-3)2=1相交于MN两点(1)求实数k 的取值范围 (2)求证:=定值例4:
§ 向量在解析几何中的应用 班级 例1:△ABC中AB两点的坐标分别为(-42)(31)O为坐标原点已知=且直线的方向向量为=(12)求顶点C的坐标例2:已知(0为坐标原点动点M满足 (1)求点M的轨迹C (2)若点PQ是曲线C上的任意两点且求的值例3:已知:过点A(0
2-5-4252-22Y练习3: 直线l 过点M(-1 2)且与以P(-2 -3)Q(40)为端 点的线段相交则l 斜率的取值范围是------------P2y-12XM
心理科学进展 2015, Vol
平面向量在解析几何中的应用----完整版(2010全国卷2理数)(12)已知椭圆的离心率为过右焦点且斜率为的直线与相交于两点.若则( )(A)1 (B) (C) (D)2【答案】B【命题意图】本试题主要考察椭圆的性质与第二定义.【解析】设直线l为椭圆的有准线e为离心率过AB分别作AA1BB1垂直于lA1B为垂足过B
违法有害信息,请在下方选择原因提交举报