#
cos(120°-60°)cos(60°-30°)PP1PAP1O思考11:向量与的夹角θ与αβ有什么关系根据数量积定义 等于什么由此可得什么结论 cos(α-β)cosαcosβsinαsinβ1两角差的余弦公式首先要认识公式结构的特征了解公式的推导过程熟知由此衍变的两角和的余弦公式.在解题过程中注意角 的象限也就是符号问题学会灵活运用.2牢记公式
注意:(1)角的任意性
- 2 - 311两角和与差的余弦一、课题:两角和与差的余弦二、教学目标:1.掌握两点间的距离公式及其推导;2.掌握两角和的余弦公式的推导;3.能初步运用公式来解决一些有关的简单的问题。三、教学重点:两点间的距离公式及两角和的余弦公式的推导。四、教学难点:两角和的余弦公式的推导。五、教学过程:(一)复习:1.数轴两点间的距离公式:.2.点是终边与单位圆的交点,则.(二)新课讲解:1.两点间的距
公式的结构特征: 左边是复角αβ 的余弦右边是单角αβ的余弦积与正弦积的差. cos15 °=练习作 业
マスタ タイトルの書式設定マスタ テキストの書式設定第 2 レベル第 3 レベル第 4 レベル第 5 レベルマスタ タイトルの書式設定マスタ テキストの書式設定第 2 レベル第 3 レベル第 4 レベル第 5 レベル 两角差的余弦公式目标导学1了解两角差的余弦公式的推导和证明过程 2掌握两角差的余弦公式并能利用公式进行简单的三角函数式的求值化简和证明不用计算器求 的值. 1
3.1.1两角和与差的余弦公式教学目标:1通过推导两角差的余弦公式体会向量与三角函数的联系 2掌握两角和差的余弦能正确运用这些公式进行简单的三角函数式的化简求值和恒等式的证明教学重难点:两角差角的余弦公式的推导教学过程:新课引入:单位圆上的点的坐标表示由图可知:( ) ( )则
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级执教人 成武 刘化斌 两角和与差的 正弦余弦正切公式问题: 由两角差的余弦公式怎样得到 两角差的正弦公式呢公式应用巩固练习1 已知2 已知3 已知化简小结作业 习题3.1 3 8 10 谢谢
PAGE PAGE 33. 1 两角和与差的正弦余弦和正切公式3.1.1 两角差的余弦公式三维目标1.通过让学生探索猜想发现并推导两角差的余弦公式了解单角与复角的三角函数之间的内在联系并通过强化题目的训练加深对两角差的余弦公式的理解培养学生的运算能力及逻辑推理能力提高学生的数学素质.2.通过两角差的余弦公式的运用会进行简单的求值化简证明体会化归思想在数学当中的运用使学生进一步掌
3.1.1 两角差的余弦公式 HYPERLINK :.zxxk 一教学目标 HYPERLINK :.zxxk 掌握用向量方法建立两角差的余弦公式.通过简单运用使学生初步理解公式的结构及其功能为建立其它和(差)公式打好基础. HYPERLINK :.zxxk 二教学重难点 HYPERLINK :.zx
违法有害信息,请在下方选择原因提交举报