单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级二几个初等函数的麦克劳林公式 第二节一泰勒公式的建立机动 目录 上页 下页 返回 结束 三泰勒公式的应用 — 应用用多项式近似表示函数理论分析近似计算泰勒 ( Taylor )公式 第三章 一泰勒公式的建立 为了研究复杂的函数通常用简单的函数来表示(或近似表示)它最简单的函数是多项式函数因此常用多项式函
数的泰勒展式 由于f (x)为3 次多项式解:1. 在近似计算中的应用 例3. 计算无理数 e 的近似值 使误差不超过说明: 注意舍入误差对计算结果的影响.计算 cos x 的近似值2. 利用泰勒公式求极限例6. 证明证:
二、几个初等函数的麦克劳林公式 第二节一、泰勒公式的建立机动 目录 上页 下页 返回 结束 三、泰勒公式的应用 应用用多项式近似表示函数理论分析近似计算泰勒 ( Taylor )公式 第三章 特点:一、泰勒公式的建立以直代曲在微分应用中已知近似公式 :需要解决的问题如何提高精度 如何估计误差 x 的一次多项式机动 目录 上页 下页 返回 结束 1 求 n 次近似多项式要求:故机动 目录 上页 下
33 Taylor(泰勒)定理 问题的提出(如下图)即二项式定理由此例可得几个常用的结论: 习题 23 (P120)作25(2);26(2);27(1)(3);28(1)(3);29;30(2);32业
一定理(泰勒定理):RCR讨论:解:1013在解析延拓 在b 上解析设用两种方法延拓到B上得函数 可证明 与 必完全等同 所以可尽量用简单特殊的方法进行延拓
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级二几个初等函数的麦克劳林公式 第三节一泰勒公式的建立三泰勒公式的应用 — 应用用多项式近似表示函数理论分析近似计算泰勒 ( Taylor )公式 第三章 特点:一泰勒公式的建立以直代曲在微分应用中已知近似公式 :需要解决的问题如何提高精度 如何估计误差 x 的一次多项式机动 目录 上页 下页 返回 结束
约公元前624年-公元前546年)公元前7至6世纪的古稀腊时期的思想家科学家数学家哲学家希腊最早的哲学学派——米利都学派(也称爱奥尼亚学派)的创始人科学和哲学之祖泰勒斯是古希腊及西方第一个有记载有名字留下来的自然科学和哲学家
二、几个初等函数的麦克劳林公式 第三节一、泰勒公式的建立机动 目录 上页 下页 返回 结束 三、泰勒公式的应用 应用用多项式近似表示函数理论分析近似计算泰勒 ( Taylor )公式 第三章 特点:一、泰勒公式的建立以直代曲在微分应用中已知近似公式 :需要解决的问题如何提高精度 如何估计误差 x 的一次多项式机动 目录 上页 下页 返回 结束 1 求 n 次近似多项式要求:故机动 目录 上页 下
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级一 幂级数 — 定理1 如果幂级数的系数满足条件 则 (1)当0< l <?时 (2)当l =0时 R=? (3)当l = ?时 R=0.二 幂级数的收敛半径三幂级数的性质1 加减法设f(x)= 和g(x)= 的收敛半径分别各为R1>0和R2>0 则= f(x
泰勒原理拉尔夫·泰勒美国著名的教育学家课程理论专家评价理论专家现代课程理论的重要奠基者科学化课程开发理论的集大成者--现代课程理论之父1949年出版《课程与教学的基本原理》被誉为现代课程理论的圣经(一)泰勒原理的思想渊源泰勒博士论文的指导老师---教育心理学家贾德的影响著名教育心理学家桑代克的影响他们都倡导行为科学的研究方法主张对人的学习进行心理测量这为泰勒原理奠定了心理学基础和方法论基础(二)泰
违法有害信息,请在下方选择原因提交举报