二次函数的解析式求法教学目标:1.让学生熟练掌握二次函数的三种基本表达式 2.让学生熟练运用已学知识求出二次函数的解析式教学重点:二次函数的三种基本表达式教学难点:综合运用已学知识求二次函数的表达式一二次函数解析式常见的三种表示形式(1)一般式y=ax2 bxc(a≠0)分析 已知二次函数图象上的三个点可设其解析式为y=ax2 bxc将三个点
二次函数解析式的求法温馨提示:脑中有图心中有式苏州高新区实验初级中学 张晓兵二次函数解析式常见的三种形式:(1)一般式(2)顶点式(3)交点式例1.根据下列条件求二次函数解析式(1)抛物线过点 (00) (12) (23)三点(2)抛物线顶点是(2-1)且过点(-12)(3)图象与x轴交于(20) (-10)且过点(0-2)例2.若抛物线 y=ax22xc的对称轴是直线 x =2 且函数
2会根据抛物线过(1)一般三点坐标求解析式(2)顶点和另一点坐标求解析式(3)与X轴的两交点坐标及另一点坐标求解析式2二次函数解析(常见的三种表示形式)(x0)3根据下列条件求二次函数解析式解法(一)可设一般式列方程组求abc解法(二)可设交点式可设一般式来解.但比较繁(3)抛物线y=ax2bxc的顶点是(-12)且abc2=0解得:8 已知抛物线 y=ax2bxc
求二次函数的解析式1已知二次函数(≠0)的图像过点E(23)对称轴为它的图像与轴交于两点A(0)B(0)且求这个二次函数的解析式2已知抛物线交轴于点A(0)B(0)两点交轴于点C且求抛物线的解析式3如图1已知抛物线ya(x1)(x3)与x轴交于AB两点与y轴负半轴交于点C若3OA·OB求抛物线的解析式 4如图1抛物线ya4与x轴分别交于EF两点与y轴正半轴交于C点抛物线的顶点为D对称轴交x轴于E点
#
二次函数解析式的求法专题一一般式:(利用图像上的三点)1根据下列条件求关于x的二次函数的解析式:(1)图象经过(01)(10)(30)(2)当x=1时y=0x=0时y= -2x=2 时y=3二顶点式:对称轴是轴且过点A(13)点B(-2-6)的抛物线的解析式为 .2根据下列条件求关于x的二次函数的解析式:(1)当x=3时y最小值=-1且图象过(07)(2)图
二次函数解析式的8种求法二次函数的解析式的求法是数学教学的难点学不易掌握.他的基本思想方法是待定系数法根据题目给出的具体条件设出不同形式的解析式找出满足解析式的点求出相应的系数.下面就不同形式的二次函数解析式的求法归纳如下和大家共勉:一定义型:此类题目是根据二次函数的定义来解题必须满足二个条件:1a ≠0 2x的最高次数为2次.例1若 y =( m2 m )xm2 – 2m -1是二次函数则m
求函数解析式是初中代数的一个重要内容下面介绍函数中最基本的函数00一次函数几种常见的解法???? 一待定系数法待定系数法是求函数解析式的基本方法其一般步骤为首先设出所求函数解析式再根据题设条件列出相应的方程(组)最后将所求待定系数的值代入所设的函数解析式即可例解:设一次函数的解析式为则由题意得交点又一次函数的图象经过点解得所求的函数解析式为1. 已知一次函数的图象经过点A(2)和B点B是另一条直线
例谈抛物线解析式的求解方法(福建省厦门市禾山中学 宋鲁梅)求抛物线的解析式的问题由于形式多变灵活性较大常常让学生感到难于掌握.本文将抛物线解析式的求解方法归纳为六种类型并例举说明它们的应用.三点型若已知抛物线上三点的坐标则可应用一般式y=x2bxc求解已知抛物线的图像经过A(-2-2)B(20) C(01)三点求这个二次函数的解析式二次函数的解析式解 设抛物线的解析式为:y=ax2bxc由
单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四
违法有害信息,请在下方选择原因提交举报