#
的边界为准线,母线平行于 z轴的柱面为侧面,D为底面,曲面第2节二重积分的计算一 直角坐标系下二重积分的计算: 由二重积分的几何意义知:以 xy 平面上的区域为顶面的曲顶柱体的体积为 而该体积也可用定积分的方法求得: DX -型区域:任一平行 y 轴的直线与D的边界的交点至多只有两个。Y -型区域:任一平行 x 轴的直线与D的边界的交点至多只有两个。例 1 计算解:解: 法一 先对y后对x积分例
§ 三重积分的计算为准线作母线平行于z 轴以与可得三重积分按其它顺序的三次积分Dxy解 再计算一个二重积分称之为先一后二法其结果为z 的函数 半平面的三次积分一般总是先对解4z三三重积分在球面坐标系中的计算圆锥面?x圆锥面? 及? d?思考:z=rR1
第三节 三重积分的计算一 直角坐标系中三重积分的计算(一)坐标面投影法 (细棒法)先对 Z 积分(“先一后二”或“细棒法”)例3解(二)坐标轴投影法 (截面法)(先二后一法) 例4解(三)、利用对称性简化三重积分的计算 (轮换对称性)二三重积分的换元法定理; 例7计算解解例 9解例 11小 结
一直角坐标系下三重积分的计算 第3节三重积分的计算先对 Z 积分(“先一后二”或“细棒法”)注 1解:方法一例 1方法二(切片法)例2解例3解例4解二三重积分的换元法定理1柱面坐标系就称为点M 的柱坐标直角坐标与柱面坐标的关系:坐标面分别为圆柱面半平面平面如图所示, 在柱面坐标系中体积元素为因此适用范围:1)积分域表面用柱面坐标表示时方程简单 ;2)被积函数用柱面坐标表示时较简单其中?为由例5计算
单击以编辑母版标题样式单击以编辑母版文本样式第二级第三级第四级第五级三二重积分的换元法 第二节一利用直角坐标计算二重积分 二利用极坐标计算二重积分 机动 目录 上页 下页 返回 结束 二重积分的计算法 第九章 一利用直角坐标计算二重积分且在D上连续时 由曲顶柱体体积的计算可知 若D为 X – 型区域 则若D为Y –型区域则机动 目录 上页 下页 返回 结束
CD(上限必须大于下限!)三、解答题
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级三二重积分的换元法 第二节一利用直角坐标计算二重积分 二利用极坐标计算二重积分 二重积分的计算法一利用直角坐标计算二重积分如果积分区域为:[X-型]其中函数在区间[a b]上连续X型区域的特点: 穿过区域且平行于y轴的直线与区域边界相交不多于两个交点.回忆:已知平行截面面积函数的立体体积设所给立体垂直于x 轴的截面面积为A(
单击以编辑母版标题样式单击以编辑母版文本样式第二级第三级第四级第五级目录 上页 下页 返回 结束 三二重积分的换元法 第二节一利用直角坐标计算二重积分 二利用极坐标计算二重积分 二重积分的计算法且在D上连续时 由曲顶柱体体积的计算可知 若D为 X - 型区域 则若D为Y - 型区域则一利用直角坐标计算二重积分当被积函数均非负在D上变号时因此上面讨论的累次积分法仍
复习与回顾一利用直角坐标系计算二重积分(3) [既非X-型域也非Y-型域] 先交下限写该线平行于坐标轴且同向94. 【例题部分】y =1DD 既是X—型域又是—Y型域yy=xD既是X—型域又是Y—型域15利用对称性 考虑第一卦限部分解作业:-1 ? x ? 1补例3分部积分法(略). (0506学年第一学期考试题A卷)(在积分中要正确选择积分次序)
违法有害信息,请在下方选择原因提交举报