§86Z变换与拉氏变换
第四章
2011年硕士研究生入学考试初试考试大纲科目名称:信号与系统 适用专业:交通信息工程及控制参考书目:《信号与系统》 郑君里主编 高等教育出版社考试时间:3小时考试方式:笔试总 分:150分一考试范围: (一)概论 1.信号的定义及其分类 2.信号的运算 3.系统的定义与分类 4.线性时不变系统的定义及特征 (二)连续时间系统的时域分析 1.微分方程的建立与求解 2.零输入
电路基础教学部 电路基础教学部 f(t)为奇函数: f(t)- f(-t)9 f(t) 指数形式傅里叶级数(3)-3π双边幅度谱A0ω0FnF-12 ω0θ -13π-o非周期信号 利用上述关系可以较为方便地从非周期信号的 求取相应的周期信号的 反之亦然2T(1) 线性-若 解:则时移若
1*44 拉普拉斯反变换441 利用LT性质442 部分分式展开法2*441 利用LT性质(1)解:解:3*441 利用LT性质(2)解:4*442 部分分式展开法(1)5*442 部分分式展开法(2)解:6*442 部分分式展开法(3)7*442 部分分式展开法(4)可用配方法、部分分式展开法解:442 部分分式展开法(5)或9*442 部分分式展开法(5)如10*442 部分分式展开法(6)解
(模拟信号) 连续信号:随时间连续变化的信号(数字信号) 离散信号:断续变化 周期信号:重复变化的信号 非周期信号: 能量信号:总能量为有限值平均功率为0 功率信号:平均功率为有限值总能量为∞ 周期信号都是功率信
信号与系统■稳态响应 LTI连续系统的响应1) 若初始条件不变输入信号 f(t) = sin t u(t)则系统的完全响应y(t) =例:描述某系统的微分方程为 y(t) 3y(t) 2y(t) = 2f(t) 6f(t)已知y(0-)=2y(0-)= 0f(t)=ε(t)求y(0)和y(0) y(t) = yx(t) yf(t) 也可以分别用经典法求解注意:对t=0时
Gener
Click 称为f1(t)和f2(t)的卷积积分简称卷积记为二.利用卷积求系统的零状态响应任意信号e(t)可表示为冲激序列之和∞?∞若把它作用于冲激响应为h(t)的LTIS则响应为r(t) = H[e(t)] = H?∫∞ ∞e(τ)δ(t ?τ)dτ??? ?∞ ??∞?∞这就是系统的零状态响应.rzs(t)= e(t
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级第二章连续时间系统的时域分析微分方程的建立与求解零输入响应和零状态响应冲击响应与阶跃响应卷积及其性质41920221§2.1微分方程的建立与求解 1. 微分方程的建立 设系统的激励信号为 响应为 则系统的特性可用一微分方程来描述对于线性时不变系统该式为一非齐次的常系数线性微分方程式4192022
违法有害信息,请在下方选择原因提交举报