不等式及其性质(基础)知识讲解责编:康红梅 【学习目标】1.了解不等式的意义,认识不等式和等式都可以用来刻画现实世界中的数量关系2 知道不等式解集的概念并会在数轴上表示解集3 理解不等式的三条基本性质,并会简单应用【要点梳理】要点一、不等式的概念一般地,用“<”、 “>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1)不等号“<”或“>”表
不等式及其性质(基础)知识讲解责编:康红梅 【学习目标】1.了解不等式的意义,认识不等式和等式都可以用来刻画现实世界中的数量关系2 知道不等式解集的概念并会在数轴上表示解集3 理解不等式的三条基本性质,并会简单应用【要点梳理】要点一、不等式的概念一般地,用“<”、 “>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1)不等号“<”或“>”表
不等式及其性质(提高)知识讲解责编:康红梅 【学习目标】1.了解不等式的意义,认识不等式和等式都可以用来刻画现实世界中的数量关系2 知道不等式解集的概念并会在数轴上表示解集3 理解不等式的三条基本性质,并会简单应用【要点梳理】知识点一、不等式的概念一般地,用“<”、 “>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1)不等号“<”或“>”
不等式及其性质(提高)知识讲解责编:康红梅 【学习目标】1.了解不等式的意义,认识不等式和等式都可以用来刻画现实世界中的数量关系2 知道不等式解集的概念并会在数轴上表示解集3 理解不等式的三条基本性质,并会简单应用【要点梳理】知识点一、不等式的概念一般地,用“<”、 “>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1)不等号“<”或“>”
(1)什么是等式?等式中“=”两侧的代数式能否交换?(2)已知数值:-5,3,0,2,7,判断: ①上述数值哪些使等式x+3=6成立? ②哪些使等式x+3=6不成立创设情境,复习导入 1.了解不等式的意义.2.掌握不等式是否成立的判定法.3.能依题意准确迅速地列出相应的不等式.教学目标: 1.了解不等式的意义.2. 掌握不等式是否成立的判定法. 3.能依题意准确迅速地列出相应的不等式.教学目标:能
【巩固练习】一、选择题1.下列式子:①5<7;②2x>3;③y≠0;④x≥5;⑤2a+l;⑥;⑦x=1.其中是不等式的有()A.3个B.4个C.5个D.6个2.下列不等式表示正确的是()A.a不是负数表示为a>0 B.x不大于5可表示为x>5C.x与1的和是非负数可表示为x+1>0 D.m与4的差是负数可表示为m-4<03.下列说法中,正确的是()A.x=3是不等式2x>1的解B.x=3是不等
【巩固练习】一、选择题1.下列式子:①5<7;②2x>3;③y≠0;④x≥5;⑤2a+l;⑥;⑦x=1.其中是不等式的有()A.3个B.4个C.5个D.6个2.下列不等式表示正确的是()A.a不是负数表示为a>0 B.x不大于5可表示为x>5C.x与1的和是非负数可表示为x+1>0 D.m与4的差是负数可表示为m-4<03.下列说法中,正确的是()A.x=3是不等式2x>1的解B.x=3是不等
#
7.1 不等式及其基本性质一选择:1.的倍减的差不大于那么列出不等式正确的是( )A. B. C. D.2.已知则下列不等式正确的是( )A. B. C. D.3.下列说法正确的是 ( )A.若则 B.若则C.若则D.若则 4.已知a为任意有理数下列式子正确的是( )A. B.
平行四边形及其性质(基础)责编:杜少波【学习目标】1.理解平行四边形的概念,掌握平行四边形的性质定理2.能初步运用平行四边形的性质进行推理和计算,并体会如何利用所学的三角形的知识解决四边形的问题.3 了解平行四边形的不稳定性及其实际应用.4 掌握两个推论:“夹在两条平行线间的平行线段相等”。“夹在两条平行线间的垂线段相等” .【要点梳理】【高清平行四边形 知识要点】知识点一、平行四边形的定
违法有害信息,请在下方选择原因提交举报