时域微分特性例1f(t)= 1/t2 ←→For example 1Ans:
时域微分特性例1f(t)= 1/t2 ←→For example 1Ans:
时域微分积分特性例2For example 2Determine f (t)←→ F (jω)Ans:f ”(t) = ?(t+2) – 2 ?(t) + ?(t –2)F2(jω)= F [f ”(t)] = e j2ω– 2 + e – j2ω= 2cos(2ω) – 2 F (jω) =Notice:dε(t)/dt = ?(t) ←→ 1ε(t) ←×→ 1/(jω)Summary:If
时域微分积分特性例2For example 2Determine f (t)←→ F (jω)Ans:f ”(t) = ?(t+2) – 2 ?(t) + ?(t –2)F2(jω)= F [f ”(t)] = e j2ω– 2 + e – j2ω= 2cos(2ω) – 2 F (jω) =Notice:dε(t)/dt = ?(t) ←→ 1ε(t) ←×→ 1/(jω)Summary:If
频域微分积分特性例1For example 1Determine f (t) = tε(t) ←→ F (jω)=Ans:Notice:tε(t) =ε(t) * ε(t) ←→It’s wrongBecause ?(?)?(?) and (1/j?)?(?) is not defined
频域微分积分特性例1For example 1Determine f (t) = tε(t) ←→ F (jω)=Ans:Notice:tε(t) =ε(t) * ε(t) ←→It’s wrongBecause ?(?)?(?) and (1/j?)?(?) is not defined
频域微分积分特性例2For example 2DetermineAns:
频域微分积分特性例2For example 2DetermineAns:
时移特性举例For example F(jω) = Ans:f1(t) = g6(t - 5) , f2(t) = g2(t - 5) g6(t - 5) ←→g2(t - 5) ←→∴ F(jω) =‖+
时移特性举例For example F(jω) = Ans:f1(t) = g6(t - 5) , f2(t) = g2(t - 5) g6(t - 5) ←→g2(t - 5) ←→∴ F(jω) =‖+
违法有害信息,请在下方选择原因提交举报