大桔灯文库logo

下载提示:1. 本站不保证资源下载的准确性、安全性和完整性,同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
2. 本文档由用户上传,版权归属用户,大桔灯负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。

相关文档

  • 17.13).ppt

    八年级 下册 勾股定理(3)本课首先运用勾股定理证明了直角三角形全等的HL 判定定理从中进一步确认一个直角三角形中 只要两边的大小确定则这个三角形就形状大小就 确定了.然后运用勾股定理通过作直角三角形 画出了长度为无理数的线段并学习在数轴上画出 无理数表示的点的方法.课件说明课件说明学习目标: 1.能用勾股定理证明直角三角形全等的斜边   直角边判定定理 2.能应用勾股定理在数轴上画出

  • 17.1(3).docx

    17.1 勾股定理(3)课型: 上课时间: 课时: 【学习目标】能运用勾股定理的数学模型解决现实世界的实际问题通过例题的分析与解决感受勾股定理在实际生活中的应用【重点难点】 重点:运用勾股定理解决实际问题 难点:勾股定理的灵活运用【授课时数】 三课时【导学过程】 一自主学习

  • 17.13.doc

    #

  • 17.1.ppt

    勾股定理合肥四十六中 胡蓓第17章 勾股定理直角三角形是一类特殊三角形它的三边具有一种特定的关系该关系称为勾股定理早在公元3世纪我国数学家赵爽就用弦图证明了这定理2002年世界数学家大会在北京召开大会会徽上的图形就是我国古代数学家赵爽为证明勾股定理所做的弦图用它作为会徽是国际数学界对我国古代数学伟大成就的肯定本章就来学习勾股定理它的逆定理以及它们的应用2002年世界数学家大会会徽探究1.如图是一

  • 17.1(第3课时).ppt

    单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版文本样式第二级第三级第四级第五级.themegallery单击此处编辑母版标题样式Click to edit Master text stylesLOGO

  • 17.1(1).ppt

    八年级 下册 勾股定理(1)本课从观察网格中的正方形面积关系出发发现了 等腰直角三角形三边之间的数量关系再通过观察 网格中以一般直角三角形的三边为边长的正方形面 积关系发现网格中的一般直角三角形也具有这种 三边长的数量关系从而提出猜想直角三角形两 直角边的平方和等于斜边平方介绍了赵爽的证明 方法.课件说明课件说明学习目标: 1.经历勾股定理的探究过程了解关于勾股定理     的一些文

  • 17.1(2).ppt

    八年级 下册 勾股定理(2)本课是在学习勾股定理的基础上学习应用勾股定 理进行直角三角形的边长计算解决一些简单的实 际问题.课件说明课件说明学习目标: 1.能运用勾股定理求线段长度并解决一些简单的 实际问题 2.在利用勾股定理解决实际生活问题的过程中能 从实际问题中抽象出直角三角形这一几何模型 利用勾股定理建立已知边与未知边长度之间的联 系并进一

  • 17.1(2).ppt

    单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级八年级 下册17.1 勾股定理(2)本课是在学习勾股定理的基础上学习应用勾股定 理进行直角三角形的边长计算解决一些简单的实 际问题.课件说明课件说明学习目标: 1.能运用勾股定理求线段长度并解决一些简单的 实际问题 2.在利用勾股定理解决实际生活问题的过程中能 从实际问题中抽象出直角三角形这一几何模型

  • 17.1(1).ppt

    #

  • 17.1课件(3)ppt.ppt

    单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级17.1勾股定理(3)---勾股定理的拓展训练复习勾股定理: 如果直角三角形的两直角边长分别为ab斜边长为c那么a2b2=c2.ABCcba复习1.在△ABC中∠B=90°AC=15cmBC=12cm则AB长为 ABC范例例1.在Rt△ABC中∠C=90°BC=12cmS△ABC =30cm2求

违规举报

违法有害信息,请在下方选择原因提交举报


客服

顶部