因为乙仪器的测量结果集中在均值附近 4D(X ) —— 描述 . X 的取值偏离平均值 的平均偏离程度6称为X 依概率 1 等于常数 E(X)当 X Y 相互独立时11解二 引入随机变量?例520例如
#
最常用的数字特征是:一维离散型随机变量 定义:设离散型随机变量X的概率分布为例: 一批产品中有一二三等及废品4种相应比例分别为6020137若各等级的产值分别为10元元4元及0元求这批产品的平均产值 P 该公式的重要性在于:当我们求 E[g(X)]时 不必求g(X)的分布而只需知道X的分布这对求 g(X) 的期望带来了极大方便 Y1418近似即:连续型随机变量的数学期望是一个
平均长度越长偏离程度越小 质量就越好 初赛3:3:4 2:3:5 2:2:6若无穷级数设连续 . X 的 . 为 f(x)常见 . 的数学期望分布它的数学期望不存在绝对收敛 则解 (1) 设整机寿命为 N D1 当X Y 独立时E (X Y ) = E (X )E (Y ) .解一 设 X 为空盒子数 则 X 的概率分布为求E(X) E(Y) E( X Y ) E(X Y) E(Y
§43 常用的统计分布一、分位数二、χ2 分布三、F 分布四、t 分布在取得总体 X 的样本(X1 , X2 , … , Xn )后,通常是借助于样本的统计量(或枢轴量)对未知的总体分布进行统计推断。为了实现推断的目标,必须进一步确定相应的统计量(或枢轴量)所服从的分布。本节讨论一些在概率论中未介绍的,但在统计推断中常用的分布。一、分位数设随机变量 X 的分布函数为 F(x),对给定的实数α(0α
#
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级7.1 点估计方法7.1.1 点估计的思想方法17.1.2 点估计量的求法 由于估计量是样本的函数 是随机变量 故对不同的样本值 得到的参数值往往不同 如何求估计量是关键问题.2常用构造估计量的方法: (两种)矩估计法和最大似然估计法.1. 矩估计
从而 在一定程度上反映了二维随机变量(XY)中的分量X与Y 的某种相互关系 Cov(X X) = D(X) Cov(X Y) = Cov(Y X) Cov( aX bY ) = ab Cov(X Y) a b 是常数 Cov(X1X2 Y)= Cov(X1 Y) Cov(X2 Y) 补充: Cov(X a )=0
§1 数学期望第四章 随机变量的数字特征§1 数学期望第四章 随机变量的数字特征第四章 随机变量的数字特征§1 数学期望返回主目录(例 9续)返回主目录设X是前10次生产的产品中的正品数并设第四章 随机变量的数字特征第四章 随机变量的数字特征
#
违法有害信息,请在下方选择原因提交举报