§5 函数的极值与最大值最小值函数极值的定义函数极值的求法最值的求法应用举例一、函数极值的定义定义使函数取得极值的点称为极值点极 值二、函数极值的求法定理1(必要条件)定义注意:例如,极值点驻点可导定理2(第一充分条件)(是极值点情形)定理2(第一充分条件)(不是极值点情形)求极值的步骤:(不是极值点情形)(是极值点情形)例1 求函数的极值 解:1) 求导数2) 求可能的极值点令得令得3) 列表判
#
#
北京大峪中学高三数学组石玉海 ①如果在x0附近的左侧 f(x)>0 右侧f(x)<0 那么f(x0)是极大值 ②如果在x0附近的左侧 f(x)<0 右侧f(x)>0 那么f(x0) 是极小值.如果左负右正(- ) 那么f(x)在这个根处取得极小值of(b)例1 求函数f(x)=x2-4x3在区间[-14]内的最值 (24)例1求函数f(x)=x2-4x3在区间[-14
最大值最小值(2) 不是极值点得则 在点 取极大值 解: 1) 求导数当 充分接近 时 上式左端正负号由右端第一项确定 极值的判别法( 定理1 定理3 ) 都是充分的. 则其最值只能 当 在 上单调时在闭区间在闭区间20厂C 的运费最省的高 h 和 b 应如何选择才能使梁的抗弯截面模量最大 设摩擦系数即则存在一个取得最大利润的
最大值最小值(2) 不是极值点得则 在点 取极大值 解: 1) 求导数当 充分接近 时 上式左端正负号由右端第一项确定 极值的判别法( 定理1 定理3 ) 都是充分的. 则其最值只能 当 在 上单调时在闭区间在闭区间20厂C 的运费最省的高 h 和 b 应如何选择才能使梁的抗弯截面模量最大 设摩擦系数即则存在一个取得最大利润的
二、最大值与最小值问题一、函数的极值及其求法 第五节机动 目录 上页 下页 返回 结束 函数的极值与 最大值最小值 第三章 一、函数的极值及其求法定义:在其中当时,(1) (2) 极大点与极小点统称为极值点 机动 目录 上页 下页 返回 结束 注意:为极大点为极小点不是极值点2)对常见函数, 极值可能出现在导数为 0 或 不存在的点1)函数的极值是函数的局部性质例如机动 目录 上页 下页 返回 结
§4 函数的极值与最大(小)值导且 为 的极值点则 =0这就是说可导函数在点 取极值的必要条件是 =0.注1 由定理易看出函数单调区间的分界点——驻点不可导的点是可能的 极值点(只是可能的极值点 未必一定当 充分小且 时 的符号决定于 的符号 而 在的 充
返回后页前页§4 函数的极值与最大(小)值二最大值与最小值 极大(小)值是局部的最大(小)值 它一极值判别们将逐一研究函数的这些几何特征.有着很明显的几何特征. 在本节中我返回费马定理告诉我们.可微函数的极值点一定是稳一极值判别我们在这里再次强调:费马定理是在函数可微的定是水平的.定点. 也就是说 在曲线上相应的点处的切线一条件费马定理的结论 就无从说起.条件下建立的. 换句
函数的最大值和最小值教学目标1.使学生理解函数的最大值和最小值概念2.会用导数求函数在闭区间上的最值3.会用导数求一些实际问题的最值教学目标:教学难点:教学重点:会利用导数求函数的最大值和最小值函数最大值最小值与函数极大值和极小值的区别与联系知识梳理1.已知函数y=f(x)在区间[ab]连续则函数y=f(x)在 区间[ab]上有______和_______.2.若在 上存在
违法有害信息,请在下方选择原因提交举报