#
三物理意义 沿方向 l (方向角为在点 P 可微 x处沿非零矢量思考:第二个结果为什么是负的例1. 求函数 解:将已知曲线用参数方程表示为解: 机动 目录 上页 下页 返回 结束 机动 目录 上页 下页 返回 结束 有等值面(等量面)综上所述:分析 得平面投影曲线三物理意义如: 力场速度场等这说明场强:在点2. 梯度? 机动 目录 上页 下页
三物理意义 沿方向 l (方向角为得朝 x 增大方向的方向导数.方向余弦为方向导数公式同样可定义二元函数( 为方向l 上的单位向量)的等值面(等量面). 带阴影的等高线图(2) 函数 f 在点P处增加最快的方向为证:向量场(矢性函数)例6.内容小结方向导数存在练习在点2. 函数
二梯度 在实际问题中还需要考虑函数在斜方向上的变化率问题如冷热空气的流动温度场的变化等存在方向导数就是函数在点 处沿方向 l 的变化率则函数在解:或定义: 若函数对于三元函数f(xyz)来说故它在点 P 的切向量为在点P 处沿又证:等高线在点 P ( x y ) 处的一个法向量可取为函数沿负梯度方向最小最小值为沿方向 l (方向角为方向导数存在(2) 求函数在 M( 1 1 1
单击以编辑母版标题样式单击以编辑母版文本样式第二级第三级第四级第五级 第十七章 第三节一方向导数 机动 目录 上页 下页 返回 结束 二梯度 方向导数与梯度一方向导数定义: 若函数则称为函数在点 P 处沿方向 l 的方向导数.在点 处沿方向 l (方向角为 ) 存在下列极限: 机动 目录 上页 下页 返回 结束 记作 定理:则函数在该点沿任意
2009/04/10§143 方向导数和梯度一、方向导数(如图)的方向导数记为证明由于函数可微,则增量可表示为得到故有方向导数解由方向导数的计算公式知故推广可得三元函数方向导数的定义二、梯度的概念(gradient)结论所得曲线在xoy面上投影如图等高线梯度为等高线上的法向量 类似于二元函数,此梯度也是一个向量,其方向与取得最大方向导数的方向一致,其模为方向导数的最大值梯度的概念可以推广到三元函数
单击此处编辑母版标题样式 §8.7 方向导数与梯度一方向导数二梯度方向导数与偏导数的关系三元函数的方向导数梯度与方向导数梯度的模方向导数的最大值等高线梯度与等高线的关系三元函数的梯度等量面数量场与向量场势与势场一方向导数 设函数z?f (xy)在点P (xy)的某一邻域U(P)内有定义.自点P引射线 l .设 x 轴正向到射线 l 的转角为j 并设P ?(x??xy??y) 为 l
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级 第一节 预备知识 第二节 极限与连续 第三节 偏导数与全微分 第四节 微分运算法则 第五节 方向导数与梯度 第六节 多元函数微分学的几何应用 第七节 多元函数的Taylor公式与极值 第八节 n元m维向量值函数的微分法 第九节 复变函数的导数与解析函数 第五章 多元函数微分法及其应用xz y0 l??
单击以编辑母版标题样式单击以编辑母版文本样式第二级第三级第四级第五级 第九章 第七节一方向导数 机动 目录 上页 下页 返回 结束 二梯度 三物理意义 方向导数与梯度一方向导数定义: 若函数则称为函数在点 P 处沿方向 l 的方向导数.在点 处沿方向 l (方向角为 ) 存在下列极限: 机动 目录 上页 下页 返回 结束 记作 定理:则函数在
一问题的提出同理沿y轴正向且有 两边同除以由方向导数的计算公式知故方向导数的计算公式是曲面x轴到梯度的转角的正切为 它在xoy面上投影方程:等值线上山时如何选择最快的方向由梯度计算公式得(注意方向导数与一般所说偏导数的区别)模:思考题
违法有害信息,请在下方选择原因提交举报