2023322基本概念--计数过程泊松过程泊松过程递推微分方程泊松过程母函数泊松分布的几个问题非齐次泊松过程复合泊松过程过滤泊松过程20233222023322泊松分布相关的问题(7). 泊松过程的差如果 是参数分别为 的相互的独立泊松过程则他们的和 是否为泊松过程2023322
[(0-1)分布] 随机变量 X 只可能有两个值: 0 和 1其概率分布为:[定义] 称{ N (t) t ?0 } 为计数过程若N (t)表示到时间t 为止已发生的事件A的总数且N (t)满足下列条件:(1) N (t) ? 0 且 N (0) = 0 (2) N (t) 取非负整数值(3) 若 s < t N (s) ? N (t) (4) 当s < t 时 N (t) ? N (s)等于区
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级第三章 泊松过程 1? 计数过程的定义计数过程的一个典型样本函数:3.1 泊松过程的定义23.1 泊松过程的定义定义3.1随机过程{N(t)t ?0 }是计数过程如果 N(t) 表示到时刻 t为止已发生的事件A的总数且N(t)满足条件(1) N(t) ?0 (2) N(t)取整数(3)若s < t 则N(s) ? N(t
泊松过程的定义和例泊松过程的定义和例泊松过程的基本性质T3 对于任意n≥1和ts1s2…sn-1≥0有 P{Tn>tT1=s1…Tn-1=sn-1} =P{X(ts1…sn-1)-X(s1s2…sn-1)=0} =P{X(t)-X(0)=0}=e-λt 即 (t)=P{Tn≤t}=1-P{Tn>t}=1-e-λt 可见对任意Tn(n≥1)其分布是均值为
[(0-1)分布] 随机变量 X 只可能有两个值: 0 和 1其概率分布为:[定义] 称{ N (t) t ?0 } 为计数过程若N (t)表示到时间t 为止已发生的事件A的总数且N (t)满足下列条件:(1) N (t) ? 0 且 N (0) = 0 (2) N (t) 取非负整数值(3) 若 s < t N (s) ? N (t) (4) 当s < t 时 N (t) ? N (s)等于区
维纳过程n个增量X(t1)-X(t0)X(t2)-X(t1) …X(tn)-X(tn-1)相互于时间差t-s(0≤s<t)而不依赖于 t 和 s 本身(事实上独立增量过程协方差函数可用方差函数表示为: (P341)接到的呼唤次数交通流中的事故数某地区地震发生为一随机过程的进球数某医院出生的婴儿数等等总之对某种(1)在不相重叠的区间上的增量具有独立性时刻称为强度为 λ 的泊松流.泊松过程也可以用另一
14?0t时间内平均发生的事件数是多少2 泊松流泊松流的合成与分解定理设N1(t)与N2(t)分别是参数为?1与?2的泊松流且N1(t)与N2(t)相互独立则合成流N1(t)N2(t)是参数为?1?2的泊松流15
概率空间掌握对随机现象的数学建模方法随机对象概念及其描述五种概率函数各种矩描述条件概率独立性全概率公式Bayes公式关于随机过程
#
《随机过程》第5章小结陈明制作chenming@内容提要随机信号的正交分解常见随机信号的性质随机信号的检测随机信号的均方滤波随机信号的正交分解正交分解和随机信号的表示随机信号的Fourier正交分解随机信号的K-L正交分解正交分解和随机信号的表示正交函数系标准正交函数系完备正交函数系正交分解随机信号的Fourier正交分解随机信号的K-L正交分解常见随机信号的性质随机信号的带宽带限随机信号带通随
违法有害信息,请在下方选择原因提交举报