12简单的逻辑联结词“或” “且” “非”问题情境“或” “且” “非”在集合运算中问题1:“或” “且” “非”的含义是?问题2:含有“或” “且” “非”的命题 形式是?如何记作?问题3:这些命题的真假性如何判定?阅读课本911完成上述问题。建构数学1 逻辑联结词“或”“且”“非”的含义:练习P11、1例1:写出下列命题的否定,并判断真假:(1)p:方程x2+1=0有实数根(2)p:2是偶数.
P: 12能被3整除 q: 12能被4整除真p(3) p:2是偶数 q:2是质数 如图一个电路并联一个灯泡和两个开关pq当两个开关至少一个闭合时灯就亮当两个开关中都不闭合时灯就不亮p真如果p q两个命题中至少一个是真命题则p∨q是真命题只有当p q两个命题都是假命题时p∨q是假命题假命题思考:如果为p∧q假命题那么p∨q一定是假命题吗 反之如果p∨q为假命题那么p∧q一
13简单的逻辑联结词在数学中常常要使用逻辑联结词“或”、“且”、“非”,它们与日常生活中这些词语所表达的含义和用法是不尽相同的,下面我们就分别介绍数学中使用联结词“或”、“且”、“非”联结命题时的含义与用法。为了叙述简便,今后常用小写字母p,q,r,s,…表示命题。一、由“且”构成的复合命题下列三个命题间有什么关系?(1)12能被3整除;(2)12能被4整除;(3)12能被3整除且能被4整除可以看
且:就是两者都有的意思或:就是两者至少有一个的意思(可兼容)非:就是否定的意思(3)p且q形式复合 命题的真值表假(1)定义:一般地用联结词或将命题联结起来组成的复合命题(3)P或q形式复合命题的真值表假(not)p 否定方式不都是请辨识下列语句中的且或非反设词 至少有两个 存在某x不成立
2.逻辑联结词是什么 非p形式复合命题的真假可以用下表表示: 例2 如果p表示5是10的约数 q表示5是15的约数 r表示5是8的约数 写出p且qp且r并判断他们的真假假真真②∵p假q假 ∴p或q为假 p且q为假 非p为真.点评:1.判断复合命题的真假首先要正确的分解为简单命题 2.按复合命题真值表判断其真假 关键是对简单命题真假的判
简单的逻辑联结词(1)班级 学习目标:(1)了解逻辑联结词且或的含义会使用这两个逻辑词联结得到新命题并能判断其真假(2)通过熟悉的物理知识理解逻辑词进一步加强学科之间的联系.学习重难点:含逻辑词的复合命题真假性的判断.正确使用逻辑词表述相关数学内容.一.引入新课情境1逻辑联结词且或的引入:同学们观察下列两组中的三个命题:菱形的对角线互相垂直
1.命题:可以判断真假的语句叫做命题.命题分类:真命题与假命题简单命题与复合命题 不都是部分否定非p假真5如何判断命题的真假(1)简单命题的真假(2)复合命题的真假 判断复合命题真假的步骤: ①命题的结构 或且非 ②简单命题的真假 ③真值表: 或----一真皆真 且----一假通假 非-
1 p且q(p q):用联结词且把命题p和 q联结起来 得到的新命题 p或q(p q):用联结词或把命题p和 q联结起来 得到的新命题 非p( p):对一个命题p全盘否定得到的新命题.2 真值表 真知识归纳≤p qp q必要不充分 解:若方程 x2 mx 1=0 有两个不等的负实根则 (2) 都是 1 复合命题:
#
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级第3讲 简单的逻辑联结词全称量词与 存在量词课 前 自 主 学 习基 础 自 测1.已知命题p:x∈Rsin x≤1则 ( ) 解析:非p命题是对命题p进行否定命题p的含义是对 任意实数xsin x≤1均成立要否定它只需存在一个实
违法有害信息,请在下方选择原因提交举报