(2)正弦余弦函数的性质(二)教学目的:知识目标:要求学生能理解三角函数的奇偶性和单调性能力目标:掌握正余弦函数的奇偶性的判断并能求出正余弦函数的单调区间 德育目标:激发学生学习数学的兴趣和积极性陶冶学生的情操培养学生坚忍不拔的意志实事求是的科学学习态度和勇于创新的精神 教学重点:正余弦函数的奇偶性和单调性教学难点:正余弦函数奇偶性和单调性的理解与应用教学过程:复习引入:偶函数奇函数的定义
142正弦函数余弦函数的性质复习旧知:正弦函数、余弦函数的性质求下列函数的周期:正弦函数的图象探 究余弦函数的图象问题:你能从它们的图象看出它们有何奇偶性吗?y=sinxy=sinx(x?R)图象关于原点对称 函数的奇偶性是如何定义的?你能从这个角度证明正弦函数和余弦函数的奇偶性吗?奇偶性为奇函数为偶函数正弦函数的单调性及单调区间单 调 性正弦函数的单调性其值从-1增大到1;其值从1减小到-1
#
正弦函数余弦函数的性质2?x-3?12π-??5?定义域关于原点对称6?-3?3?
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级1.4.2 正弦函数余弦函数的性质 第二课时探究(一):正余弦函数的奇偶性和单调性y-1xO1π2π3π4π5π6π-2π-3π-4π-5π-6π-πy=sinxxyO1-1y=cosxy-1xO1π2π3π4π5π6π-2π-3π-4π-5π-6π-πy=sinx正弦函数在每一个闭区间上都是增函数在每一个闭区间
正弦函数余弦函数的性质(第二课时)——奇偶性单调性最值授课时间: 班级:高一(4) 授课人:高新俊教学目标知识与技能1.结合函数图象理解正弦函数及余弦函数的奇偶性单调性最值2.能熟练运用正弦函数余弦函数的性质解题.过程与方法通过性质的概括和性质的应用加强学生数形结合的思想方法.情感态度价值观培养学生实事求是的科学学习态度和坚忍不拔的意志.教学重难点重点:正弦函数余弦函数的
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级1.4.2正弦函数余弦函数的性质定义域和值域正弦函数定义域:R值域:[-11]余弦函数定义域:R值域:[-11]1周期性周期函数定义:对于函数f (x)如果存在一个非零常数T使得当x取定义域内的每一个值时都有f (xT)=f (x)那么函数f (x)就叫做周期函数非零常数T叫做这个函数的周期正弦函数是周期函数
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版文本样式第二级第三级第四级第五级1.4.2正弦函数余弦函数的性质正弦函数余弦函数正弦函数余弦函数的图象引入: 三角函数是刻画圆周的数学模型那么周而复始的基本特征必定蕴含在三角函数的性质之中.三角函数到底有那些性质呢 每当角增加(或减少)2π所得角的终边与原来的终边相同.故两角的正弦余弦函
正弦函数的图象的对称轴为…上时当 在区间都是增函数1.能根据图象说出函数的定义域值域奇偶性单调区间.
人教A版高中数学必修4正弦函数、余弦函数的性质(1)周期性对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x)那么函数f(x)就叫做周期函数非零常数T叫做这个函数的周期正弦函数是周期函数,2kπ(k∈Z且k≠0)都是它的周期,最小正周期是2π余弦函数是周期函数,2kπ(k∈Z且k≠0)都是它的周期,最小正周期是2π例2 求下列函数的周期:解: (1
违法有害信息,请在下方选择原因提交举报