用定义计算卷积举例例:f (t) = e t,(-∞t∞),h(t) = (6e-2t – 1)ε(t),求yzs(t)。解: yzs(t) = f (t) * h(t)当t τ,即τ t时,ε(t -τ) = 0
用定义计算卷积举例例:f (t) = e t,(-∞t∞),h(t) = (6e-2t – 1)ε(t),求yzs(t)。解: yzs(t) = f (t) * h(t)当t τ,即τ t时,ε(t -τ) = 0
卷积定理举例For exampleAns:Using symmetry,
卷积定理举例For exampleAns:Using symmetry,
图解法计算卷积举例例f (t) ,h(t) 如图所示,求yzs(t)= h(t) * f (t) 。[解] 采用图形卷积 。 f ( t -τ)f (τ)反折f (-τ)平移t① t0时 , f ( t -τ)向左移f ( t -τ) h(τ) = 0,故yzs(t) = 0② 0≤t ≤1 时, f ( t -τ)向右移③ 1≤t ≤2时⑤ 3≤t 时f ( t -τ) h(τ) = 0,故yzs(t) = 0④ 2≤t ≤3 时0
图解法计算卷积举例例f (t) ,h(t) 如图所示,求yzs(t)= h(t) * f (t) 。[解] 采用图形卷积。 f ( t -τ)f (τ)反折f (-τ)平移t① t0时 , f ( t -τ)向左移f ( t -τ) h(τ) = 0,故yzs(t) = 0② 0≤t ≤1 时, f ( t -τ)向右移③ 1≤t ≤2时⑤ 3≤t 时f ( t -τ) h(τ) = 0,故yzs(t) = 0④ 2≤t ≤3 时0
用定义求卷积和例例:f (k) = a kε(k),h(k) = b kε(k) ,求yzs(k)。解: yzs(k) = f (k) * h(k)当i0,ε(i) = 0;当ik时,ε(k - i) = 0ε(k)*ε(k) = (k+1)ε(k)
用定义求卷积和例例:f (k) = a kε(k),h(k) = b kε(k) ,求yzs(k)。解: yzs(k) = f (k) * h(k)当i0,ε(i) = 0;当ik时,ε(k - i) = 0ε(k)*ε(k) = (k+1)ε(k)
卷积定理举例For exampleAns:Using symmetry,
第5章 定积分及其应用(一)单项选择题1.函数在区间[ab]上连续是在[ab]上可积的( )A.必要条件 B充分条件 C充分必要条件 D既非充分也非必要条件2.下列等式不正确的是( )A. B. C. D. 3.的值等于( ).A.-1 .设则的值等
违法有害信息,请在下方选择原因提交举报