第24课时 平面向量数量积的物理背景及其含义 课时目标1.理解平面向量数量积的含义了解平面向量数量积与投影的关系掌握数量积的性质.2.掌握平面向量数量积的几何意义掌握平面向量数量积的运算律. 识记强化1.已知两个非零向量ab我们把a·bcosθ叫做a与b的数量积(或内积)记作a·ba·bcosθ.规定零向量与任一向量的数量积为零其中θ是a与b的夹角.2.acosθ叫做向量a在b方向上的
第21课时 平面向量基本定理 课时目标1.了解平面向量的基本定理及其意义.2.能正确的运用平面向量基本定理解决问题. 识记强化1.平面向量基本定理:如果e1e2是同一平面内的两个不共线向量那么对于这一平面内的任意向量a有且只有一对实数λ1λ2使aλ1e1λ2e2.不共线的向量e1e2叫做表示这一平面内所有向量的一组基底.2.已知两个非零向量a和b作eq o(OAsup6(→))a
第26课时 平面向量的应用举例 课时目标1.体会向量是解决处理几何物理问题的工具.2.掌握用向量方法解决实际问题的基本方法. 识记强化1.向量方法解决几何问题的三步曲.(1)建立平面几何与向量的联系用向量表示问题中涉及的几何元素将平面几何问题转化为向量问题(2)通过向量运算研究几何元素之间的关系如距离夹角等问题(3)把运算结果翻译成几何关系.2.由于力速度是向量它们的分解与合成与向量的
第20课时 向量的数乘运算及其几何意义 课时目标1.理解向量数乘的定义及规定掌握向量数乘的几何意义.2.掌握向量数乘的运算法则会应用法则进行有关计算. 识记强化1.向量数乘的运算律(1)λ(μ)aμ(λa)(2)(λμ)aλaμa(3)λ(ab)λaλb.2.共线向量定理向量a(a≠0)与b共线当且仅当存在唯一实数λ使bλa. 课时作业一选择题1.已知λ∈R则下列命题正确的是( )
第25课时 平面向量的数量积的坐标表示模夹角 课时目标1.掌握向量数量积的坐标表示会进行向量数量积的坐标运算.2.会用坐标运算求向量的模并会用坐标运算判断两个向量是否垂直.3.能运用数量积的坐标求出两个向量夹角的余弦值. 识记强化1.若a(x1y1)b(x2y2)则a·bx1x2y1y2.2.若有向线段eq o(ABsup6(→))A(x1y1)B(x2y2)则eq o(ABs
第23课时 平面向量共线的坐标表示 课时目标1.理解用坐标表示的平面向量共线的条件.2.会根据平面向量的坐标判断向量是否共线. 识记强化 两向量平行的条件(1)设a(a1a2)b(b1b2)则a∥b?a1b2-a2b10.(2)设a(a1a2)b(b1b2)且(b1b2≠0)则a∥b?eq f(a1b1)eq f(a2b2)即两条向量平行的条件是相应坐标成比例. 课时作业
第4课时 三角函数线 课时目标 借助单位圆理解任意角三角函数定义(正弦余弦正切). 识记强化1.在直角坐标系中我们称以原点O为圆心以单位长度为半径的圆为单位圆.2.利用单位圆定义求任意角的三角函数.设α是一个任意角它的终边与单位圆交于点P(xy)那么:(1)y叫做α的正弦记作sinα即sinαy(2)x叫做α的余弦记作cosα即cosαx(3)eq f(yx)叫做α的正切记作ta
第18课时 向量加法运算及其几何意义 课时目标1.理解向量加法定义掌握加法运算的三角形平行四边形法则.2.理解向量加法运算及其几何意义. 识记强化1.已知非零向量ab在平面内任取一点A作eq o(ABsup6(→))aeq o(BCsup6(→))b则向量eq o(ACsup6(→))叫a与b的和向量记作eq o(ACsup6(→))ab如图.(三角形法则)2.
第19课时 向量减法运算及其几何意义 课时目标1.理解向量减法的定义掌握相反向量概念.2.掌握向量减法运算的几何意义能作出两个向量的差向量. 识记强化1.定义:a-ba(-b)即减去一个向量相当于加上这个向量的相反向量.2.几何意义:以A为起点作向量eq o(ABsup6(→))aeq o(ADsup6(→))b则eq o(DBsup6(→))a-b.如图所示. 课
第2课时 弧度制 课时目标1.了解度量角的单位制即角度制与弧度制.2.理解弧度制的定义能够对弧度和角度进行正确的换算. 识记强化1.我们把长度等于半径长的弧所对的圆心角叫做1弧度的角即用弧度制度量时这样的圆心角等于1 rad.2.弧长计算公式:lα·r(α是圆心角的弧度数)扇形面积公式Seq f(12)l·r或Seq f(12)α·r2(α是弧度数且0<α<2π).3.角度
违法有害信息,请在下方选择原因提交举报