时域微分积分特性例2For example 2Determine f (t)←→ F (jω)Ans:f ”(t) = ?(t+2) – 2 ?(t) + ?(t –2)F2(jω)= F [f ”(t)] = e j2ω– 2 + e – j2ω= 2cos(2ω) – 2 F (jω) =Notice:dε(t)/dt = ?(t) ←→ 1ε(t) ←×→ 1/(jω)Summary:If
时域微分积分特性例2For example 2Determine f (t)←→ F (jω)Ans:f ”(t) = ?(t+2) – 2 ?(t) + ?(t –2)F2(jω)= F [f ”(t)] = e j2ω– 2 + e – j2ω= 2cos(2ω) – 2 F (jω) =Notice:dε(t)/dt = ?(t) ←→ 1ε(t) ←×→ 1/(jω)Summary:If
频域微分积分特性例2For example 2DetermineAns:
频域微分积分特性例2For example 2DetermineAns:
频域微分积分特性例1For example 1Determine f (t) = tε(t) ←→ F (jω)=Ans:Notice:tε(t) =ε(t) * ε(t) ←→It’s wrongBecause ?(?)?(?) and (1/j?)?(?) is not defined
频域微分积分特性例1For example 1Determine f (t) = tε(t) ←→ F (jω)=Ans:Notice:tε(t) =ε(t) * ε(t) ←→It’s wrongBecause ?(?)?(?) and (1/j?)?(?) is not defined
时域微分特性例1f(t)= 1/t2 ←→For example 1Ans:
时域微分特性例1f(t)= 1/t2 ←→For example 1Ans:
1-1 Rates of change and LimitsAverage and Instantaneous SpeedAverage Rates of change and SecantLinesLimits of Function ValuesExercise(a) Does not exit(b) 1(c) 0(a) 0(b) -1(c) Does not exitTrueTrueFals
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级函数与极限单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级函数与极限第七节 利用等价无穷小量代换求极限一等价无穷小量代换性质(等价无穷小量代换)意义: 在求某些无穷小量乘除运算的极限时可使用其等价无穷小量代换不影响极限值的结果.常用等价无穷小量:例1解练习解例2解例3解练习解注意:等
违法有害信息,请在下方选择原因提交举报