#
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级3.3 柯西积分公式1柯西积分公式: 我们可用柯西积分定理(复围线形式)导出一个用边界值表示解析函数的内部值的积分公式即:柯西积分公式定理1:设区域D的边界是围线(或复围线)连续则有(3.3.1)称为柯西积分公式证:图3.3.1应用柯西积分定理得 就有利用积分的性质得 因此所以即得: 注: 公式(3.3.1)也常写成(3.3.
()二解析函数的高阶导数
第五节柯西积分公式一、柯西积分公式二、典型例题三、小结2一、柯西积分公式定理3关于柯西积分公式的说明:(1) 把函数在C内部任一点的值用它在边界上的值表示(这是解析函数的又一特征)(2) 公式不但提供了计算某些复变函数沿闭路积分的一种方法, 而且给出了解析函数的一个积分表达式(这是研究解析函数的有力工具)(3) 一个解析函数在圆心处的值等于它在圆周上的平均值4二、典型例题例1解56例2解由柯西积分
§33柯西积分公式一、柯西积分公式| 右边 - 左边 |则在边界 C 上连续, 则一、柯西积分公式定理如果函数 在区域 D 内解析,DdGC证明(思路)即只要 d 足够小,所证等式两边的差的模可以任意小,由于左边与右边均为常数,与 d 无关,故等式成立。在边界 C 上连续, 则一、柯西积分公式定理如果函数 在区域 D 内解析,DC意义 解析函数在其解析区域内的值完全由边界上的值确定。 换句话说,解
§33柯西积分公式一、柯西积分公式| 右边 - 左边 |则在边界 C 上连续, 则一、柯西积分公式定理如果函数 在区域 D 内解析,DdGC证明(思路)即只要 d 足够小,所证等式两边的差的模可以任意小,根据闭路变形原理,该差值与 d 无关,故等式成立。在边界 C 上连续, 则一、柯西积分公式定理如果函数 在区域 D 内解析,DC意义 解析函数在其解析区域内的值完全由边界上的值确定。 换句话说,解
公式:当n≥0时意义:解析函数的整体性:边界值完全决定内部值解析函数的可导性:一次可导 =>无限次可导 物理意义:解析函数与平面标量场相联系而平面场的边界条件决定着区域内部的场 应用:计算上简化路积分的计算例2问题:计算回路积分
#
§33柯西积分公式一、柯西积分公式| 右边 - 左边 |则在边界 C 上连续, 则一、柯西积分公式定理如果函数 在区域 D 内解析,DdGC证明(思路)即只要 d 足够小,所证等式两边的差的模可以任意小,由于左边与右边均为常数,与 d 无关,故等式成立。在边界 C 上连续, 则一、柯西积分公式定理如果函数 在区域 D 内解析,DC意义 解析函数在其解析区域内的值完全由边界上的值确定。 换句话说,解
§33柯西积分公式一、柯西积分公式| 右边 - 左边 |则在边界 C 上连续, 则一、柯西积分公式定理如果函数 在区域 D 内解析,DdGC证明(思路)即只要 d 足够小,所证等式两边的差的模可以任意小,由于左边与右边均为常数,与 d 无关,故等式成立。在边界 C 上连续, 则一、柯西积分公式定理如果函数 在区域 D 内解析,DC意义 解析函数在其解析区域内的值完全由边界上的值确定。 换句话说,解
违法有害信息,请在下方选择原因提交举报