1、填空题1)。2)设,则。3)已知,则。4)函数在点处的剃度为。5)已知在点沿从点到点方向的方向导数是。6)已知曲面上的点处的法线平行于直线,则该法线方程为。2、解下列各题1)已知,其中为可微函数,求。解:方程两边微分得2)设,其中均为二阶可微函数,求。解:3)设函数有连续的偏导数,试用极坐标与直角坐标的转化公式,将变化为下的表达式解: 因为,所以。4)已知,其中均为可微函数,求。解:利用全
多元函数微分学P57--例2 设而求.解:P57--例3 设而求.解:P57--例4 设而求.解:P58--例6 设其中有二阶导数求 .解:令 两个自变量一个中间变量则P58--例7 设其中有二阶连续偏导数求 .解: (因为有二阶连续偏导数所以)P58--练习3 设其中有二阶连续偏导数有二阶导数求. (2000)解: 根据复合函数求偏导公式 P58--练习4 设函数其中函数具有二阶
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级第八章 习题课多元函数微分学一 基本要求1 理解二元函数的概念会求定义域2 了解二元函数的极限和连续的概念3 理解偏导数的概念掌握偏导数及高阶偏导数的求法4 掌握多元复合函数的微分法5 了解全微分形式的不变性6 掌握隐函数的求导法7 会求曲线的切线及法平面曲面的切平面及法线8 了解方向导数的概念和计算公式9 了解
方向导数存在答案提示: . (1) 令 (2) 设 沿直线趋近于(00) 极限不存在解③全微分法有一阶导数或偏导数 求2)条件极值即5. 设 具有二阶偏导数补充题参考答案.设又函数
例1 求 的定义域.例如(3)开集(2)二元函数的极限也叫二重极限例4 求极限 在有界闭区域D上的多元连续函数在D上至少取得它的最大值和最小值各一次.解
第五节 偏导数的应用即在点(111)处的切线和法平面.过 且与切平面垂直的直线法线法线方程设z=f(xy)在点 的某邻域内有定义如果在该邻域内定理1(极值必要条件)定理2 ( 极值充分条件 )例6就可以看作条件极值问题.1. 作函数求 在条件 下的极值
3图2它们的定义域为{(xy)︱x2y2≤a2} 趋向于点故当点P(xy)沿x轴趋向于(00)时趋向于点(00)时有证明:设下列说法正确吗例如注: 根据二重极限的定义在点在点(00)的极限不存在所以该点是函数的一个间断点二元函数的间断点有可能还可以形成一条或几条曲线在整个xoy平面上是连续的因为x和y是xy的连续函数所以x2和y2也是xy的连续函数于是xyx2y2根据多元函数的连续性若点P0在此函
#
《常微分方程》与《多元函数微分学》单元检测题(一)班级_______ _______ 选课号_______ _______ 成绩______一选择题(15分)1.设时则( ).A.B.C.D..2.设线性无关的函数都是的解是任意常数则该非齐次方程的通解是( ).A.B.C.D..3.设函数点M(11)则( ).A.B.C.D..4.已知函数则( ).A.B.C
高数测试题六(多元函数微分部分)答案一选择题(每小题4分共20分)1=( B )A 3 B 6 C 不存在 D 2函数在点的两个偏导数都存在的函数在该点可微的( A )A 必要非充分条件 B 充分非必要条件 C 充要条件 D 无关条件3曲线在点(245)处的切线与x轴正向所成的倾角是( C )A B C D
违法有害信息,请在下方选择原因提交举报