=5961438 t _blank 对勾函数年级:高二 科目:数学 时间:962009 16:25:27 新5961438请问对勾函数的最值如何求答:同学你好现提供以下供你参考:函数的单调性.显然此函数的定义域为(-∞0)∪(0∞)用描点法可作出此函数的图象为:从图象上可看出函数在(0)上单调递减在[∞)上单调递增在(-∞-]上单调递增在[-0)上单调递减.我们可用单调性的定义验证它的
函数值域(最值)求法小结一配方法适用类型:二次函数及能通过换元法等转化为二次函数的题型.【例1】 求函数 的值域.解:为便于计算不妨: 配方得:利用二次函数的相关知识得从而得出:.【例2】已知函数y(ex-a)2(e-x-a)2(a∈Ra≠0)求函数y的最小值.解析:y(ex-a)2(e-x-a)2(exe-x)2-2a(exe-x)2a2-2.令texe-xf(t)t2-2at2a2-2.∵t≥
二次函数求最值(经济类问题)例1: 求函数的最值.注意:1配方法求得顶点坐标用顶点坐标公式检验 2实际问题一定要标注x的取值范围判定顶点横坐标是否在范围内再取最值例2:某商品现在的售价为每件60元每星期可卖出300件市场调查反映:每涨价1元每星期少卖出10件每降价1元每星期可多卖出20件已知商品的进价为每件40元如何定价才能使利润最大注意:1步骤(1)找初始值:成本起始销售价起始销售量
对勾函数对勾函数是数学中一种常见而又特殊的函数 重点(窍门): 其实对勾函数的一般形式是: 定义域是:{xx0} 值域是: 当x>0有有最小值是2 当x<0有x=-有最大值是:-2 对勾函数的解析式为(其中a>0)它的单调性讨论如下: 设则 下面分情况讨论 (1)当时-<0-a>0>0所以f()-f()<0即f()<f()所以函数在(-∞-)上是增函数 (
函数的研究(A)知识储备1.定义:对勾函数是一种类似于反比例函数的一般函数又被称为双勾函数勾函数等也被形象称为耐克函数 所谓的对勾函数(双曲线函数)是形如的函数由图像得名是数学中一种常见而又特殊的函数2.函数的性质:令则 (1)图像: l 0 9319cf099346edcad0581b45 o 查看图片 t _blank ?(2)定义域:值域:(3)奇偶性:奇函数(4)单调性: 增区
对勾函数是一种类似于反比例函数的一般函数所谓的对勾函数是形如f(x)=axbx的函数是一种教材上没有但考试老喜欢考的函数所以更加要注意和学习一般的函数图像形似两个中心对称的对勾故名当x>0时f(x)=axbx有最小值(这里为了研究方便规定a>0b>0)也就是当x=sqrt(ba)的时候(sqrt表示求二次方根)同时它是奇函数就可以推导出x<0时的性质令k=sqrt(ba)那么增区间:{xx≤-k}
#
#
函数值域(最值)求法小结 西华师范大学数学与信息学院 函数是中学数学的一个重点而函数值域(最值)的求解方法更是一个常考点因此能熟练掌握其值域(最值)求法就先得十分的重要本节旨在通过对典型例题的讲解来归纳函数值域(最值)的求法希望对广大读者有所帮助配方法适用类型:二次函数及能通过换元法等转化为二次函数的题型求函数的值域分析与解:本题中含有二次函数可利用配方法求解为便于计算不妨设:配方得
三角函数最值求法 文水中学数学组 马俊英 三角函数最值问题是对三角函数知识的综合运用在三角函数中占有及其重要的位置而学生对此问题往往束手无策因此对一些最值问题进行归纳总结显得很有必要 一:形如y=asinxbcosx型问题: 例1:当时函数f(x)=sinxcosx的最大值最小值各为多少
违法有害信息,请在下方选择原因提交举报