第卷第 期
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级 由于Schr?dinger方程的复杂性只有少数几个问题能精确求解大部分情况下只能采用近似方法求解本章主要介绍用Schr?dinger方程求解实际物理问题的近似方法第5章 近似方法 主要内容:§5.1非简并定态微扰理论 线性谐振子和基态氢原子的极化§5.2 简并定态微扰理论 Stark效应 §5.3 变
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级近似方法:微扰与变分微扰方法:与时间无关(定态微扰) 与时间有关(量子跃迁)定态微扰:简并非简并第五章 微扰理论一适用条件 求解定态薛定谔方程 比较复杂无法直接求解若可将其分成两部分 §5.1 非简并的定态微扰的本征值和本征函数可以求出则方程(1)就可以通过逐步近似的方法求解二微扰论的基本方程 设 的本征值和
24
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级一 量子力学的建立二 量子力学基本原理三 量子力学的理论方法四 量子力学的应用 高 等 量 子 力 学三 量子力学的理论方法一 表象理论二 微扰理论五 散射理论 六 多粒子体系理论 七 二次量子化 八 相对论量子力学 三 量子跃迁理论四 自旋与角动量理论(一)非简并定态微扰理论 (二) 简并情况下的微扰理论二 微扰
第卷第 期
近似方法:微扰与变分 微扰方法:与时间无关(定态微扰) 与时间有关(量子跃迁) 定态微扰:简并非简并 第五章 微扰理论 一适用条件 求解定态薛定谔方程 比较复杂无法直接求解若可将其分成两部分 § 非简并的定态微扰 的本征值和本征函数可以求出则方程(1)就可以通过逐步近似的方法求解 二微扰论的基本方程 设 的本征值和本征函数已经全部求出: 的本征方程(1)式变
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级 上次课思考题证明耦合表象下 的矩阵是对角化的 例子:求静电场中的一维谐振子的能级 假设一维谐振子还带有电荷q并处在外加恒定电场E(沿轴正向)中那么哈密顿量是再求二级微扰能先要计算矩阵元可以采用升降算符方法求解(以后讲)只有相邻矩阵元不为零代入二级微扰能量公式微扰能与n无关即每个能级移动
#
#
违法有害信息,请在下方选择原因提交举报