三角函数的图象和性质:函数性质[-1,1][-1,1]RR(k∈Z) (k∈Z) RR;;;;奇奇偶奇基础自测1函数y=1-2sin xcos x的最小正周期为()解析B2设点P是函数f(x)=sin x (≠0)的图象C的一个对称中心,若点P到图象C的对称轴的距离的最小值是 则f(x)的最小正周期是()解析由正弦函数的图象知对称中心与对称轴的距离的最小值为最小正周期的 故f(x)的最小正周期为T
2.三角函数的图象和性质:质奇偶性偶2.设点P是函数f(x)=sin x ( ≠0)的图象C的 一个对称中心若点P到图象C的对称轴的距离的 最小值是 则f(x)的最小正周期是( ) 解析 由正弦函数的图象知对称中心与对称轴 的距离的最小值为最小正周期的 故f(x)的 最小正周期为T=方法一 利用余弦函数的简图得知定义域为方法二 利用单位圆中的余弦线OM依题意知0<O
主页y=cosx值 域[-1 1]图象单调性答案: D
0练习:解三角不等式组 0
单击此处编辑母版标题样式单击此处编辑母版文本样式二级三级四级五级单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级清华大学 张三这是一节正式课这是一个小标题这是一个小标题这是一个小标题这是一个小标题1这是第一部分的标题教师介绍XX老师上海交通大学XX专业高考总分XX分XX单科(教授科目)XX分目前在掌门
三角函数的图象与性质(2)、(3)(sin2xcosxsin3x+cos2xsin4x)+(cos2xcos4x-sin2xsinxcos3x)横坐标缩短1/2例4 如图,它表示电流强度I=Asin(wt+Φ)在一个周期内的图象。(1)试根据图象写出y= Asin(wt+Φ)的解析式(2)在任意一段3/100秒的时间内,电流强度I既能取得最大值|A|,又能取得最小值―|A|吗?∵1/50是五点作图
三角函数的图象与性质2.三角函数的性质:(结合图象理解,表中k∈Z)三角函数的图象(1)列表:(2)描点、连线、成图(2)描点、连线、成图.素材2素材1三角函数的单调性三角函数的值域及最值[知识能否忆起]一、y=Asin(ωx+φ)的有关概念二、用五点法画y=Asin(ωx+φ)一个周期内的简图用五点法画y=Asin(ωx+φ)一个周期内的简图时,要找五个关键点,如下表所示:三、函数y=sin
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级1.4.2正弦函数余弦函数的性质学习目标:1理解周期函数周期函数的周期和最小正周期的定义 2 正余弦函数的周期性 3 正余弦函数的奇偶性和单调性 1周期性周期函数定义:对于函数f (x)如果存在一个非零常数T使得当x取定义域内的每一个值时都有f (xT)=f (x)那么函数f (x)就叫做周期函数非零常数T叫做这个函数的周期注
三角函数的图象一知识回顾1.三角函数线及其图形表示(详见P123)2.函数3.函数的图象①用五点法作图00A0-A0②图象变换:平移伸缩两个程序③A---振幅 ----周期 ----频率 4.图象的对称性①的图象既是中心对称图形又是轴对称图形()②的图象是中心对称图形有无穷多条垂直于x轴的渐近线二例题剖析1.三角函数线的应用例1:解三角不等式组思路分析:利用三角函数线和单调性求解解:如
三角函数的图象与性质 1.对三角函数的图象和性质的考查中以图象的变换函数的单调性奇偶性周期性对称性最值等作为热点内容并且往往与三角变换公式相互联系有时也与平面向量解三角形或不等式内容相互交汇.2.题型多以小而活的选择题填空题来呈现如果设置解答题一般与三角变换解三角形平面向量等知识进行综合考查题目难度为中低档.1. 三角函数定义同角关系与诱导公式(1)定义:设α是一个任意角它的终边与单位圆交于点P(
违法有害信息,请在下方选择原因提交举报