#
#
第一节 微分方程的初等积分法214 可利用变量代换求解的几类一阶微分方程34567891011121314151615可降阶的高阶微分方程17181920212223242526 习题 41 (P229)作4(1)(4)(5)(8)(11);5(3)(5)(7);10 ; 11(2)(3);业
第四章 常微分方程及其应用第一节 微分方程的初等解法几个实例例 2例 311微分方程的基本概念一二三四例2试求以下列函数为通解的微分方程: 习题 41 (P229)作1(3)(4);3(2)(8)(10)业
为全微分方程2即 y = C x 注:其积分因子为 且其积分因子为:乘以原方程的两侧得方程:即方程的通解为: 解则 令代入方程得 A在曲线上任取一点M (xy)()M令 代入方程()并分离变量得设其通解为即18分离变量得1. 全微分方程积分因子
解法及应用 可分离变量方程 方程两边同除以 x 即为齐次方程 方法 2 化为微分形式 7(2) 由一阶线性微分方程解的公式得确定定解条件 ( 个性 )例4 . 已知某曲线经过点( 1 1 )11令则方程变为非齐次因此微分方程为19齐次方程通解:求质点的运动规有特故
16微分方程与计算机模拟 常微分方程数值解方法捕食者与被捕食者问题有阻力抛射曲线问题卫星轨道模拟问题????数值方法求常微分方程初值问题 求解步骤:(1)用函数文件定义一阶微分方程(或方程组)右端函数(2)用MATLAB命令ode23()求数值解或绘积分曲线使用格式:[TY] = ode23(FTspany0)其中Tspan = [t0tN]是常微分方程求解区域y0是初始值F 是包括函数文件名字的
#
一阶线性常系数微分方程组微分方程的应用31 一阶常系数线性微分方程组解法举例第四节 微分方程应用举例
21 线性微分方程解的结构线性相关线性无关D
违法有害信息,请在下方选择原因提交举报