大桔灯文库logo

下载提示:1. 本站不保证资源下载的准确性、安全性和完整性,同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
2. 本文档由用户上传,版权归属用户,大桔灯负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。

相关文档

  • .ppt

    单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级 不等式恒成立问题例1:当 时 恒成立求 的范围. 从数的角度: 结论1:(变量分离法)将不等式中的两个变量分别置于不等号的两边则可将恒成立问题转化成函数的最值问题求解 若 则若 则 当 时

  • .doc

    不等式恒成立问题的求解策略江苏省海安高级中学------罗湘军Oxy4不等式恒成立问题是高中数学的一类重点问题此类题型综合性较强题中所涉及的未知数参数数目有多个处理时常常陷入困境之中.本文我们借助几条具体的例题探讨这类问题的基本的解题的策略.一. 典例分析1. 数形结合例1 设若不等式恒成立求a的取值范围.解析:设则它表示的是圆心为半径为2的半圆(如图所示).另设它的几何意义是一条经过原点斜

  • 含参.ppt

    从数的角度: 2yn考虑 的图象即 y从形的角度:解:原不等式可转化为 对 (当且仅当 时取等号) 图象法(函数性质及图象)求 的范围.1x求函数最值画图

  • 含参.ppt

    从数的角度: 2yn考虑 的图象即 结论3:(二次函数型) 得x 一次函数型 二次函数型 解:设显然 1图象法(函数性质及图象)

  • 导数与.ppt

    单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级导数与不等式的恒成立问题知识回顾:导数的基本应用:求切线方程求单调区间 求极值求函数闭区间上的最值总结:典例分析总结:总结:巩固深化 求实数a的取值范围拓展延伸点拨:f(x)的值域是g(x)值域的子集思路分析 求实数a

  • 讲义.doc

    不等式恒成立问题一知识梳理:不等式与函数数列有关恒成立的综合运用二课前练习1.若关于x的不等式在R上恒成立则a的最大值是( )A. 1 B. 0 C. -1 D. 22.不等式恒成立则的取值范围是 3.不等式对于满足的一切实数都成立则的范围是 4

  • 含参.doc

    不等式中恒成立问题的解法研究在不等式的综合题中经常会遇到当一个结论对于某一个字母的某一个取值范围内所有值都成立的恒成立问题恒成立问题的基本类型:类型1:设(1)上恒成立(2)上恒成立类型2:设(1)当时上恒成立上恒成立(2)当时上恒成立上恒成立类型3:类型4: 恒成立问题的解题的基本思路是:根据已知条件将恒成立问题向基本类型转化正确选用函数法最小值法数形结合等解题方法求解一用一次函数的性质

  • 二.doc

    专题研究在不等式的综合题中经常会遇到当一个结论对于某一个字母的某一个取值范围内所有值都成立的恒成立问题恒成立问题的基本类型:类型1:设(1)上恒成立(2)上恒成立类型2:设(1)当时上恒成立上恒成立(2)当时上恒成立上恒成立类型3:类型4: 恒成立问题的解题的基本思路是:根据已知条件将恒成立问题向基本类型转化正确选用函数法最小值法数形结合等解题方法求解一用一次函数的性质 对于一次函数有:例1

  • 含参.doc

    Evaluation Only. Created with Aspose.Words. Copyright 2003-2022 Aspose Pty Ltd.不等式中恒成立问题的解法研究在不等式的综合题中经常会遇到当一个结论对于某一个字母的某一个取值范围内所有值都成立的恒成立问题恒成立问题的基本类型:类型1:设(1)上恒成立(2)上恒成立类型2:设(1)当时上恒成立上恒成立(2)当时上恒成立上恒成

  • 有解.doc

    不等式恒成立与有解问题不等式恒成立与有解问题一直是中学数学的重要内容. 它是函数数列不等式等内容交汇处的一个较为活跃的知识点随着中学数学引进导数它为我们更广泛更深入地研究函数不等式提供了强有力的工具. 在近几年的高考试题中涉及不等式恒成立与有解的问题有时在同一套试题中甚至有几道这方面的题目比如2006年高考江西卷以及湖北卷.其中特别是一些含自然对数和指数函数的不等式恒成立与有解问题将新增

违规举报

违法有害信息,请在下方选择原因提交举报


客服

顶部