大桔灯文库logo

下载提示:1. 本站不保证资源下载的准确性、安全性和完整性,同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
2. 本文档由用户上传,版权归属用户,大桔灯负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。

相关文档

  • .doc

    天津四中青年教师展示课课题: 已知递推公式求通项公式(二) 学 科:数 学教 师:刘 晖 班 级:高三5班<教学目标>1知识与技能运用化归思想整体化思想特殊到一般思想等将一些形如较为复杂的已知递推公式求通项公式问题转化为熟悉的易于解决的问题2过程与方法(1)通过新旧知识的结合促进学生原有知识向新的学习的迁移努力拓展学生的思维空间(2)通过引导学生主动

  • 八种数列的方法 .doc

    八种求数列通项公式的方法一公式法例1 已知数列满足求数列的通项公式解:两边除以得则故数列是以为首项以为公差的等差数列由等差数列的通项公式得所以数列的通项公式为评注:本题解题的关键是把递推关系式转化为说明数列是等差数列再直接利用等差数列的通项公式求出进而求出数列的通项公式二累加法例2 已知数列满足求数列的通项公式解:由得则所以数列的通项公式为评注:本题解题的关键是把递推关系式转化为进而求出

  • 八种数列的方法--.doc

    #

  • 数列的几种方法.doc

    求数列通项公式的方法一公式法例1 已知数列满足求数列的通项公式解:两边除以得则故数列是以为首项以为公差的等差数列由等差数列的通项公式得所以数列的通项公式为评注:本题解题的关键是把递推关系式转化为说明数列是等差数列再直接利用等差数列的通项公式求出进而求出数列的通项公式二累加法例2 已知数列满足求数列的通项公式解:由得则所以数列的通项公式为评注:本题解题的关键是把递推关系式转化为进而求出即得

  • .doc

    #

  • 由数列.doc

    数列通项公式的求法综述法一形如 数列通项公式——迭加法[例1]在数列中求[练习1](c为常数)成公比不为1的等比数列求法二形如 (或)——递推作差法-[例2]数列的前n项和为Sn且求[练习2]已知求法三形如 ——累积法×[例3]在中求[练习3]在中求法四形如 ——用除法÷ ——同除以[例4]已知求[练习4]已知求练习:已知求(07天津)法五形如 ——取对法[例5]已知求[练习]已

  • 由数列.doc

    由数列递推公式求通项公式的求解策略一般地如果已知数列的第1项(或前几项)且任一项与它的前一项(或前几项)间的关系可以用一个公式来表示那么这个公式就叫做这个数列的递推公式.由递推公式给出的数列称之为递推数列.等差等比数列实际上就是最简单的递推数列.求递推数列的通项的方法较为灵活本文归纳涉及递推数列的常用解题方法及技巧一直接构成等差等比数列 例1.已知数列递推公式求数列通项公式二迭加法(或迭乘法

  • 的方法.doc

    由递推公式求通项公式的方法一型数列(其中不是常值函数)例1. 在数列中变式练习:已知满足求的通项公式二型数列(其中不是常值函数)例2. 已知数列中求数列的通项公式变式练习:在数列中 >0求.三型数列例3. 在数列中当时有求的通项公式变式练习:已知数列满足求数列的通项公式.四型数列(p为常数)此类数列可变形为则可用累加法求出由此求得.例4已知数列满足求. 变式练习:(1)已知满足求 (2

  • 数列再探.pdf

    #

  • 的几种方法.doc

    由递推公式求通项公式的几种方法迭加法:已知数列{}中求练习:已知数列{}中求迭乘法:已知数列{}中求练习:已知数列{}中求由型递推公式求.已知数列{}中求练习:1.已知数列{}中求. 2.已知数列{}中求.四.由型递推公式求.例4.已知数列{}中求.练习:已知数列{}中求.五.由型递推公式求.例5.已知数列{}中求.练习:已知数列{}中求.习题 :1若数列的前n项和为则数列的通项公式为____

违规举报

违法有害信息,请在下方选择原因提交举报


客服

顶部