微分方程数值解法课程设计----A组 计算022班3号 许用复化梯形计算积分解:算法思想:根据复化梯形公式:取步长有写出程序如下所示:N=100a=0b=10h=(b-a)NT=zeros(0N)for j=1:N T(j)=[exp(-(ah(j-1)).2)exp(-(ahj).2)] t=sum(T)end运行结
#
() 假设初值问题()的解y=y(x)唯一存在且足够光滑.对求解区域[ab]做剖分 o称为Euler中点公式或称双步Euler公式.hh= 实际上常将Euler公式与梯形公式结合使用: 称之为改进的Euler方法. 这是一种单步显式方法.012345678910 可见公式的局部截断误差为: y(xn1)-yn1=O(hp1). 三阶R-K
建立差分格式略去误差项得到差分方程对象用差商表示导数显式格式
第7章 常微分方程数值解法7.0 基本概念1. 一阶常微分方程的初值问题 (7.0-1)注:若f在D = {a ? x ? b y<?}内连续且满足Lip条件:?L ?0使f (x – y1) – f (xy2) ? Ly1 – y2 (7.0-2)则(7.0-1)的连续可微解y(x)在[ab]上唯一存在2. 初值问题的数值解称(7.0-1
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级第七章 常微分方程数值解法问题的提出欧拉方法龙格—库塔方法线形多步法一阶方程组和高阶方程大纲要求熟练掌握求解常微分方程初值问题的欧拉公式改进欧拉公式和经典龙格-库塔公式掌握显示公式隐式公式预测校正局部截断误差整体截断误差及阶的概念会推导欧拉公式和改进欧拉公式的局部截断误差了解线性多步法重点:欧拉公式改进欧拉公式及其截断误差问题
节点间距 为步长通常采用等距节点即取 hi = h (常数)定义1x=f即隐式欧拉公式具有 1 阶精度单步法:在计算yi1 时只利用y i多步法:在计算yi1 时不仅利用y i 还要利用 yi?1 yi?2…梯形公式hy1ihRunge-Kutta方法的推导思想112KiStep 3: 将 yi1
第一章 概 述1.1 偏微分方程工具箱的功能 偏微分方程工具箱(PDE Toolbox)提供了研究和求解空间二维偏微分方程问题的一个强大而又灵活实用的环境PDE Toolbox的功能包括: (1) 设置PDE (偏微分方程)定解问题即设置二维定解区域边界条件以及方程的形式和系数 (2) 用有限元法 (FEM) 求解PDE数值解 (3) 解的可视化 无论是
#
常微分方程初值问题数值解法-常微分方程初值问题数值解法? E5B8B8E5BEAEE58886E696B9E7A88BE5889DE580BCE997AEE9A298E695B0E580BCE8A7A3E6B3953 t _self ? javascript:void(0) ? E5B8B8E5BEAEE58886E696B9E7A88BE5889DE580BCE997AEE9A2
违法有害信息,请在下方选择原因提交举报