常数项级数的审敛法 有界 .为正项级数 .设收敛 这说明强级数的敛散性. 故对一切例2.满足(1) 当0 < l <∞时2) 特别取收敛 (2) 当例5. 讨论级数设 例如 p – 级数 解: 定理6 . ( Leibnitz 判别法 )故级数收敛于S 且收敛为条件收敛 .定理7. 绝对收敛的级数一定收敛 .定理8. 绝对收敛级数不因改变项的位置而改变其和. 其和为不满足积分判别法绝对收
#
机动 目录 上页 下页 返回 结束 若单调递增 设则有故不妨(2) 若弱级数高等数学课件机动 目录 上页 下页 返回 结束 机动 目录 上页 下页 返回 结束 发散 .定理3. (比较审敛法的极限形式)3112023由定理2 知可得如下结论 :3112023时 级数收敛 (2) 当高等数学课件?对任意给定的正数 ?3112023高等数学课
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版标题样式二交错级数及其审敛法 三绝对收敛与条件收敛 第二节一正项级数及其审敛法常数项级数的审敛法 机动 目录 上页 下页 返回 结束 一正项级数及其审敛法若定理 1. 正项级数收敛部分和序列有界 .若收敛 ∴部分和数列有界 故从而又已知故有
单击以编辑母版标题样式单击以编辑母版文本样式第二级第三级第四级第五级二交错级数及其审敛法 三绝对收敛与条件收敛 第二节一正项级数及其审敛法常数项级数的审敛法 机动 目录 上页 下页 返回 结束 一正项级数及其审敛法若显然:正项级数的部分和数列是单调增加数列 即:由数列极限的存在定理知:如果部分和数列否则它发散有上界则称为正项级数 .则它收敛 机动 目录 上页 下页
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级二交错级数及其审敛法 三绝对收敛与条件收敛 第二节一正项级数及其审敛法常数项级数的审敛法 机动 目录 上页 下页 返回 结束 第六章 一正项级数及其审敛法若定理 1. 正项级数收敛部分和序列有界 .若收敛 ∴部分和数列有界 故从而又已知故有界.则称为正项级数 .单调递增 收敛 也收敛.证:
二、交错级数及其审敛法三、绝对收敛与条件收敛第二节一、正项级数及其审敛法常数项级数的审敛法 第十二章 *四、绝对收敛级数的性质一、正项级数及其审敛法若定理 1 正项级数收敛部分和序列有界 若收敛 , ∴部分和数列有界, 故从而又已知故有界则称为正项级数 单调递增, 收敛 , 也收敛都有定理2 (比较审敛法)设且存在对一切有(1) 若强级数则弱级数(2) 若弱级数则强级数证:设对一切收敛 ,也收敛
二、交错级数及其审敛法 三、绝对收敛与条件收敛 第一节一、正项级数及其审敛法常数项级数的审敛法 第十二章 一、正项级数及其审敛法若定理 1 正项级数收敛部分和序列有界 若收敛 , ∴部分和数列有界, 故从而又已知故有界则称为正项级数 单调递增, 收敛 , 也收敛都有定理2 (一般形式比较判别法)设且存在对一切有(1) 若级数则级数(2) 若级数则级数证:设对一切则有收敛 ,也收敛 ;发散 ,也发散
二、交错级数及其审敛法 三、绝对收敛与条件收敛 第二节一、正项级数及其审敛法常数项级数的审敛法机动 目录 上页 下页 返回 结束第十一章 一、正项级数及其审敛法若定理 1 正项级数收敛部分和序列有界 若收敛 , ∴部分和数列有界, 故从而又已知故有界则称为正项级数 单调递增, 收敛 , 也收敛机动 目录 上页 下页 返回 结束 定理2 (比较审敛法)设且存在对一切有(1) 若级数则级数(2) 若级
单击以编辑母版标题样式单击以编辑母版文本样式第二级第三级第四级第五级二比较审敛法 三比值审敛法和根值审敛法 第二节一正项级数收敛的充分必要条件正项级数及其审敛法 第十一章 一正项级数收敛的充分必要条件 正项级数收敛的充要条件是:部分和数列有上界. 设收敛 有上界 故又知故有界.正项级数:单调递增 收敛 也收敛.证 1. 定义2. 定理11.1(?)(?)问题: 正项级数收敛的条件二比较审敛
违法有害信息,请在下方选择原因提交举报