大桔灯文库logo

下载提示:1. 本站不保证资源下载的准确性、安全性和完整性,同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
2. 本文档由用户上传,版权归属用户,大桔灯负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。

相关文档

  • 01_().ppt

    单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级第六章 定积分的应用1回顾曲边梯形求面积的问题一问题的提出abxyo定积分的微元法2求曲边梯形面积的步骤:3abxyo45元素法的一般步骤:这个方法通常叫做元素法.应用方向: 平面图形的面积体积平面曲线的弧长功水压力引力和平均值等.61直角坐标系情形曲边梯形的面积7曲边梯形的面积如果图形是由两条曲线围成8一般地

  • 01____.ppt

    1回顾曲边梯形求面积的问题 定积分的微元法第六章 定积分的应用2求曲边梯形面积的步骤:345元素法的一般步骤:这个方法通常叫做元素法.应用方向: 平面图形的面积;体积;平面曲线的弧长;功;水压力;引力和平均值等.61、直角坐标系情形曲边梯形的面积第一节 定积分在几何上的应用7曲边梯形的面积如果图形是由两条曲线围成8一般地设两条连续曲线与直线所围平面图形面积为A ,则9解两曲线的交点10解两曲线

  • _.ppt

    单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级 定积分的几何应用一平面图形的面积1 直角坐标系 作为一般情况讨论设平面图形由 [ a b ] 上连续的两条曲线 y = f ( x ) 与 y = g ( x ) 及两条直线 x =a x =b 所围成在 [a b ] 上任取典型小区

  • 02_2节__.ppt

    1三、平面曲线弧长四、小结及作业21、直角坐标系情形曲边梯形的面积3曲边梯形的面积如果图形是由两条曲线围成4一般地设两条连续曲线与直线所围平面图形面积为A ,则5解两曲线的交点6解两曲线的交点7于是所求面积说明:注意各积分区间上被积函数的形式.问题:89解两曲线的交点10如果曲边梯形的曲边为参数方程曲边梯形的面积11解椭圆的参数方程由对称性知总面积等于4倍第一象限部分面积.12例5 求由摆线的一拱

  • .ppt

    1) 所求量 U 是与区间[a b]上的某函数 f (x) 有关的积分表达式1. 直角坐标情形解: 由应用定积分换元法得上任取小区间解: 利用对称性 定理: 任意光滑曲线弧都是可求长的.则得设所给立体垂直于x 轴的截面面积为A(x) 有垂直于x 轴 的截面是直角三角形侧面积元素解: 对曲线弧参数方程注意: 求弧长时积分上下限必须上大下小

  • .ppt

    面积元素积分变量只能选 吗有选 为积分变量小结所以所求曲线为

  • .ppt

    单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级定积分在几何中的应用(二)(木青制作)定积分求平面曲边图形面积的步骤及理论 基本步骤:①画图形②求交点③写积分④算面积 基本理论:①如果函数 和 在 上可积并且满足 那么介于直线 和曲线 之间的图形面积可以表示为定积

  • 6.5_.ppt

    65定积分在几何上的应用一、微元法二、平面图形的面积三、旋转体的体积复习定积分的概念 曲边梯形的面积设曲边梯形是由连续曲线以及两直线所围成 ,求其面积 A 解决步骤 :1) 分割在区间 [a , b] 中任意插入 n –1 个分点用直线将曲边梯形分成 n 个小曲边梯形;2) 近似代替在第i 个窄曲边梯形上任取作以为底 ,为高的小矩形,并以此小矩形面积近似代替相应窄曲边梯形面积得3) 求和4) 取极

  • 06_节_.doc

    第六节 定积分的几何应用分布图示★ 面积表为定积分的步骤★ 定积分的微元法★ 直角坐标情形★ 例1★ 例2★ 例3★ 例4★ 参数方程情形★ 例5★ 极坐标情形★ 例6★ 例7★ 例8★ 圆锥★ 圆柱★ 旋转体★ 旋转体的体积★ 例9★ 例 10★ 例 11★ 例 12★ 例 13 ★ 平行截面面积为已知的立体的体积★ 例 14★ 例 15★ 内容小结 ★ 练习★ 习题5-6内容要点一、微

  • 06_节_.doc

    第五章 定积分及其应用29第五章 第六节 定积分的几何应用分布图示★ 面积表为定积分的步骤★ 定积分的微元法★ 直角坐标情形★ 例1★ 例2★ 例3★ 例4★ 参数方程情形★ 例5★ 极坐标情形★ 例6★ 例7★ 例8★ 圆锥★ 圆柱★ 旋转体★ 旋转体的体积★ 例9★ 例 10★ 例 11★ 例 12★ 例 13 ★ 平行截面面积为已知的立体的体积 ★ 例 14★ 例 15★ 内容小结 ★ 课

违规举报

违法有害信息,请在下方选择原因提交举报


客服

顶部