南开大学2007年数学分析考研试题及解答1求解法一 利用其中.解法二 .2 求解 令由于此积分在上一致收敛从而在上收敛由得故或者3 求函数在闭区域上的最小值解 令解得为在内的唯一驻点且当属于边界时令代入得所以或者利用拉格朗日乘数法求解设再令求得驻点值4 设求二重积分解 所以5 设求曲面积分的值解 观察曲面方程可知其关于轮换对称因此又是关于的奇函数 曲面关于平面对称故所以6 设为单位圆的正向计
南开大学2006年数学分析考研试题及解答 求极限.设试证.设在上有界可积求证存在使得.若幂级数在内收敛于设满足和则对所有.设函数在有任意阶导数且导数数列在一致收敛于求证.设在球上连续令求证.设在全空间上具有连续的偏导数且关于都是周期的即对任意点成立则对任意实数有这里是单位方体.设为三阶实对称方阵定义函数求证在条件下的最大值为矩阵的最大特征值.(1)设数列满足定义集合为整数集为自然数集求证对任
南开大学2008年数学分析考研试题一.计算题1.求极限 2.求和 3.已知求4.设则5.设区域求 二.设证明数列收敛并求其极限三.设并且使证明使得.四.设在一致连续且广义积分收敛求证五.设在上可微对任意 其中任取实数证明级数收敛六.证明函数项级数(1)在上收敛但不一致收敛(2)和函数在上任意次可导七.作变换将方程变换为关于自变量方程八.求由曲面将球体分成两部分的体积之比九设是上具有二阶连续导
南开大学2005年数学分析考研试题计算二重积分其中.设为由方程组确定的隐函数求.求极限.求证在上连续.判断级数的敛散性.设函数在上连续可导且求证在上一致收敛设求证在上连续可导.设在全平面上有连续的偏导数并且对任何一个圆周有求证.设在上两次可导并且对任何有.设求证求证存在使得(3)求证.设和在区间内有定义对任何有 求证:(1)在内左导数右导数存在 (2)对任意(3) 在内连续南开大学2005
兰州大学2006年数学分析试题及解答一.1. 求.解:由得.求.解:所以.求.解: .求级数的和函数和收敛区域.解:设当时显然有于是当时收敛当时发散.显然收敛当或者时收敛故级数的收敛域是设从而.设在有限区间上连续并且存在.证明:在上一致连续.证明:记作由已知条件得在上连续从而在上一致连续更有在上一致连续即在上一致连续.若在的邻域上有定义并且在处的
华南理工大学2004年数学分析考研试题及解答1 求极限解 由得2 设求解 对两边求导有于是有 对两边求导得故3 设试证:收敛并求证明 令则有在上是严格递减的当时当时若则有显然将代入得由得单调递减单调递增设在中令取极限得从而有故或者 注意到我们有当时当时于是知 往证递减递增实际上从中解出 当为偶数时当为奇数时从而由单调有界原理存在
南京大学2007年数学分析考研试题一(30分)举例1举一个极限点(凝聚点)在区间上稠密的可数集.2举一个有振动间断点的函数.3举一个连续但不是一致连续的函数.4举一个可逆的可微函数其逆函数不可微.5举一个非零的可微函数它在某一点的任意阶导数均为零.6举一个Riemann不可积的函数.7举一个非负函数它在上积分收敛但极限不存在.8举一个在上定义的二元函数它分别对于变量连续但不是连续的二元函数.
南开大学2009年数分考研试题计算其中由围成.计算.计算为与所交从点到的部分其中为正的常数求的收敛域与和函数.求的表达式.若收敛在上单调下降求证.设在内有二阶导数证明:存在使得在内. 设在的邻域内存在连续的三阶偏导数并且所有三阶偏导数的绝对值不超过常数与关于对称并且与的距离为为由指向的方向试证: .证明:若则 .利用这一结论分析DAlembert判别法与Cauchy判别法二者在判别正项级数的
1 求.解 解法1 利用几何平均与算术平均不等式及.解法2 利用Stolz定理原式 .2 求.解 利用Stolz定理原式.3 求.解 .4 设求.解 原式5当时证明:.证明 当时于是 故有.南京大学2005年数学分析考研试题一 求下列极限1 设常数试求极限2 3 设求二 设试讨论的连续性一致连续性及其可微性三 设研究
南京大学2004年数学分析考研试题求下列极限设求设求.确定最小正数使下面的不等式成立:.设求并证明级数收敛.求其中是的上半球的下侧.设当时求并讨论在的一致收敛性证明:对任一自然数方程在内有且仅有一个根若是的根求.设证明 在上有界证明.南京大学2004年数学分析考研试题解答一.1. 解 显然所以解 .解 因为 所以.解 设在点的某个邻域内连续
违法有害信息,请在下方选择原因提交举报