大桔灯文库logo

下载提示:1. 本站不保证资源下载的准确性、安全性和完整性,同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
2. 本文档由用户上传,版权归属用户,大桔灯负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。

相关文档

  • .pdf

    2011 年 3 月18 日

  • .ppt

    #

  • 三大.doc

    三大类递推数列通项公式的求法  一、一阶线性递推数列求通项问题一阶线性递推数列主要有如下几种形式:1这类递推数列可通过累加法而求得其通项公式(数列{f(n)}可求前n项和)  当为常数时,通过累加法可求得等差数列的通项公式.而当为等差数列时,则为二阶等差数列,其通项公式应当为形式,注意与等差数列求和公式一般形式的区别,后者是,其常数项一定为0.2这类递推数列可通过累乘法而求得其通项公式(数列{g

  • .pdf

    #

  • (整理).doc

    几类递推数列通项公式的求法(整理)六是常数)型 形如是常数)的二阶递推数列都可用特征根法求得通项其特征方程为…① 若①有二异根则可令是待定常数) 若①有二重根则可令是待定常数) 再利用可求得进而求得例7 已知数列满足求数列的通项解:其特征方程为解得令由得 例8已知数列满足求数列的通项解:其特征方程为解得令由得 七型 对于数列是常数且) 其特

  • 常见.ppt

    单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级常见递推数列通项公式的求法1例1已知数列{an}的首项a1=1且an1=an2 求数

  • 构造.doc

    巧用构造法求递推数列的通项公式蒋明权利用递推数列求通项公式在理论上和实践中均有较高的价值自从二十世纪八十年代以来一直是全国高考和高中数学联赛的热点之一本文想介绍一下利用构造法求递推数列的通项公式的方法和策略希望能抛砖引玉一构造等差数列法例1.在数列{an}中求通项公式an解:对原递推式两边同除以可得:①令②则①即为则数列{bn}为首项是公差是的等差数列因而代入②式中得故所求的通项公式是二构造

  • 常见.doc

    常见递推数列通项公式的求法一. 教学内容: 专题:常见递推数列通项公式的求法二. 教学重难点:1. 重点:递推关系的几种形式2. 难点:灵活应用求通项公式的方法解题?三求数列的通项公式an举例 1. 观察法或公式法—等差等比数列公式例如:3591733…则 (比较2481632…) 2. 求差或求商法: 例如:数列{an}满足: 4. 叠乘法

  • 常见.ppt

    湖南长郡卫星远程学校2010年上学期制作 06常见递推数列通项公式的求法1.{an}的前项和Sn=2n2-1求通项an 公式法(利用an与Sn的关系 或利用等差等比数列的通项公式)an=S1 (n=1) Sn-Sn-1(n≥2)解:当n≥2时an=Sn-Sn-1=(2n2-1) -[2(n-1)2-1]

  • 几种.doc

    #

违规举报

违法有害信息,请在下方选择原因提交举报


客服

顶部