大桔灯文库logo

下载提示:1. 本站不保证资源下载的准确性、安全性和完整性,同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
2. 本文档由用户上传,版权归属用户,大桔灯负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。

相关文档

  • .doc

    倍角公式和半角公式一           目标认知:学习目标:  1.能从两角和差公式导出二倍角的正弦余弦正切公式  2.能运用倍角公式进行简单的恒等变换(包括导出半角公式积化和差和差化积公式)  3.体会换元思想化归思想方程思想等在三角恒等变换中的作用.学习重点:  倍角公式及其变形.学习难点:  倍半角公式变形及应用.内容解析:1.倍角公式  在和角公式中令=即得二倍角公式:      .  

  • .doc

    倍角的正弦余弦和正切(一)学习要求:倍角公式的推导及应用倍角公式及其等价变式的灵活应用自学评价:1.2.3.4.5.精典范例:例1 :已知求的值例2:求下列各式的值()(2)(3)(4)例3:证明恒等式:追踪训练:若的值等于A. B. C. D.2.可化简为A. B. C. D.3.若 4.已知5.化简:(1)

  • NO20.doc

    倍角公式和半角公式NO.20班级_________ ___________ ____________【基础知识梳理】1.倍角公式__________________.2.半角公式(注意符号的选择)3.升幂公式 降幂公式

  • .doc

    #

  • .doc

    三 角 函 数1.两角和与差的三角函数 2.二倍角公式 3.半角公式: 4.辅助角公式5.积化和差公式: 6. 和差化积公式: 例题:已知∈()sin=则tan()的值.例2.sin163°sin223°sin253°sin313°的值.已知求cos若例5.已知正实数ab满足例6. 若sinA=sinB=且AB均为钝角求AB的值.例7.在△ABC中角AB

  • §3.2.1-§3.2.2.doc

    #

  • 05.doc

    高清视频学案 3 / 3 第4讲倍角、半角公式北京四中 苗金利考纲导读1.会用两角和与差的正弦、余弦公式推导倍角、半角公式,了解它们的内在联系。2.解决比较简单的应用问题,体会换元思想、方程思想的运用。知识要点复习和差角的三角函数公式典型例题分析例1、求证下列等式成立:(1);(2).(3);(4);(5);(6);(7);(8),其中,.例2、求值:(2)已知,求.(3)已知,求.例3、 已知

  • 05.doc

    高清视频学案 2 / 2 倍角、半角公式北京四中 苗金利考纲导读1.会用两角和与差的正弦、余弦公式推导倍角、半角公式,了解它们的内在联系。2.解决比较简单的应用问题,体会换元思想、方程思想的运用。知识要点复习和差角的三角函数公式典型例题分析例1、求证下列等式成立:(1);(2).(3);(4);(5);(6);(7);(8),其中,.例2、求值:(1)已知,求.(2)已知,求.例3、 已知,求:

  • 05.doc

    高清视频学案 3 / 3 第4讲倍角、半角公式北京四中 苗金利考纲导读1.会用两角和与差的正弦、余弦公式推导倍角、半角公式,了解它们的内在联系。2.解决比较简单的应用问题,体会换元思想、方程思想的运用。知识要点复习和差角的三角函数公式典型例题分析例1、求证下列等式成立:(1);(2).(3);(4);(5);(6);(7);(8),其中,.例2、求值:(2)已知,求.(3)已知,求.例3、 已知

  • 05.doc

    高清视频学案 3 / 3 第4讲倍角、半角公式北京四中 苗金利考纲导读1.会用两角和与差的正弦、余弦公式推导倍角、半角公式,了解它们的内在联系。2.解决比较简单的应用问题,体会换元思想、方程思想的运用。知识要点复习和差角的三角函数公式典型例题分析例1、求证下列等式成立:(1);(2).(3);(4);(5);(6);(7);(8),其中,.例2、求值:(2)已知,求.(3)已知,求.例3、 已知

违规举报

违法有害信息,请在下方选择原因提交举报


客服

顶部