--2 向量 可由A的列向量组(4-2)(1)的线性方程组§ 线性方程组解的存在性定理10而在解空间中基的概念我们在这里称为基础解系是例1是解吗就是必然是线性无关的 从而也是基础解系.由此得到解法2.是矩阵如果证20证明只需解§ 线性方程组在几何中的应用25注:非齐次方程组的解集不是空间得齐次方程组的基础解系※30
#
称为方程组(1) 的解向量它也就是向量方程(2)的解.二基础解系及其求法所以 个 维向量 亦线性无关.解证线性方程组 有解所以方程组有无穷多解.所以方程组的通解为)(=
§4 线性方程组的解的结构回顾:线性方程组的解的判定包含 n 个未知数的齐次线性方程组 Ax = 0 有非零解的充分必要条件是系数矩阵的秩 R(A) < n .包含 n 个未知数的非齐次线性方程组 Ax = b 有解的充分必要条件是系数矩阵的秩 R(A) = R(A b)并且当R(A) = R(A b) = n时方程组有唯一解当R(A) = R(A b) < n时方程组有无限多个解.引言问题:什
数学教研室单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级第四章 线性方程组 §4.1 线性方程组的基本概念一非齐次线性方程组未知数向量常数项向量系数矩阵增广矩阵二.齐次线性方程组系数矩阵 未知数向量§4.2 齐次线性方程组齐次线性方程组齐次线性方程组解向量的性质2齐次线性方程组的基础解系的性质§4.3 非齐次线性方程组非齐次线性方程组非齐次线性方程组解的结构§
第四章线性方程组一高斯消元法二齐次线性方程组三非齐次线性方程组1一高斯消元法设一般线性方程组为则称矩阵为方程组(1)的系数矩阵。2称矩阵为方程组(1)的增广矩阵。称为方程组(1)的导出组,或称为(1)对应的齐次线性方程组。3 定义:线性方程组的初等变换(1)用一非零的数乘某一方程(2)把一个方程的倍数加到另一个方程(3)互换两个方程的位置可以证明一个线性方程组经过若干次初等变换,所得到的新的线性方
#
单击此处编辑母版标题样式一线性方程组有解的判定条件问题:证必要性.()nDnAnAR阶非零子式中应有一个则在设=()根据克拉默定理个方程只有零解所对应的nDn从而这与原方程组有非零解相矛盾().nAR<即充分性.()nrAR<=设.个自由未知量从而知其有rn-任取一个自由未知量为1其余自由未知量为0即可得方程组的一个非零解 .证必要性.有解设方程组bAx=()()BRAR<设则B的行阶梯形矩阵中最
(1)(1)若 为 的解则 设齐次线性方程组的系数矩阵为 并不妨设 的前 个列向量线性无关. 所以 是齐次线性方程组解空间的一个基.例2 解线性方程组1.非齐次线性方程组解的性质(1)应用克莱姆法则求基础解系四小结)(思考题
§35投入产出数学模型一、投入产出平衡表二、向量的线性运算三、直接消耗系数四、平衡方程组的解一、投入产出平衡表 基本假设? 在一个经济系统有n个生产部门? 各部门分别用1? 2? ? ? ?? n表示? 部门i只生产一种产品i? 并且没有联合生产? 即产品i仅由部门i生产? 每一生产部门? 一方面以自已的产品分配给各部门作为生产或满足社会的非生产性消费需要? 并提供积累? 另一方面? 每一生产
违法有害信息,请在下方选择原因提交举报