#
#
#
#
设函数在上有定义对所有有且收敛求证:证明 使得由对上述固定的因而存在当时有 于是 即 设在上有定义对任意在上可积且收敛试证:证明 由推广的黎曼引理对任意有 对任意存在有 对上述及固定的当时有 于是故结论得证北京大学2005年数学分析考研试题及解答1 设试求和解 首先我们注意到在的时候是单调
北京交通大学 2
#
#
2007年北京大学数学分析考研试题及解答 例 设是的实根求证:且证明 (1)任意当时有当且充分大时有所以的根存在又严格递增所以根唯一任意所以的根()因为若时的根不趋向于则存在使得中含有的一个无穷子列从而存在收敛子列(为某有限数)矛盾例 设讨论级数的收敛性解 显然当时级数发散由 得(充分小)于是(充分大)当时收敛收敛收敛绝对收敛当时收敛收敛于是收敛从而收敛收敛而发散由得
华中科技大学2007年考研数学分析试题(一)华中科技大学2007年考研数学分析试题(二) :
违法有害信息,请在下方选择原因提交举报