大桔灯文库logo

下载提示:1. 本站不保证资源下载的准确性、安全性和完整性,同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
2. 本文档由用户上传,版权归属用户,大桔灯负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。

相关文档

  • 2014.doc

    特殊的平行四边形A级 基础题1.(2013年四川宜宾)矩形具有而菱形不具有的性质是(  )A.两组对边分别平行 B.对角线相等 C.对角线互相平分 D.两组对角分别相等2.(2013年四川巴中)如图4-3-35菱形ABCD的两条对角线相交于点O若AC6BD4则菱形ABCD的周长是(  )图4-3-35A.24 B.16 C.4 eq r(13) D.2 eq r(13)3.(2

  • 2013数学.doc

    第2课时 特殊的平行四边形一级训练1.(2012年江苏宜昌)如图4-3-23在菱形ABCD中AB5∠BCD120°则△ABC的周长等于(  )A.20 B.15 C.10 D.5图4-3-23   2.下列说法不正确的是(  )A.一组邻边相等的矩形是正方形B.对角线相等的菱形是正方形C.对角线互相垂直的矩形是正方形D.有一个角是直角的平行四边形是正方形3.(2011年江苏无锡)菱形具

  • 2013数学.doc

    第2课时 特殊的平行四边形一级训练1.(2012年江苏宜昌)如图4-3-23在菱形ABCD中AB5∠BCD120°则△ABC的周长等于(  )A.20 B.15 C.10 D.5图4-3-23   2.下列说法不正确的是(  )A.一组邻边相等的矩形是正方形B.对角线相等的菱形是正方形C.对角线互相垂直的矩形是正方形D.有一个角是直角的平行四边形是正方形3.(2011年江苏无锡)菱形具有而矩

  • .ppt

    单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级特殊的平行四边形中考复习中考题型及命题趋势本节重点考查矩形菱形正方形的性质和判定这节内容多知识比较零碎因此要掌握它们之间的联系与区别它常与折叠旋转等变换动手操作题结合有时也和函数三角形圆 等相关知识联系综合性较强预计2011年此类题还会出现 3.四边形具有不稳定性. 4.多边形内角和定理:n边形的内角和等于(n-2)·180°

  • .doc

    特殊的平行四边形复习题1平行四边形ABCD的四个内角度数的比∠A:∠B:∠C:∠D可能是( )(A)2:5:2:5(B)3:4:4:3(C)4:4:3:2(D)2:3:5:62菱形的两条对角线长分别是6和8则菱形的边长是 ( )(A)10(B)7(C)5(D)4[来源:学科网]3平行四边形矩形菱形正方形都具有的性质是( )A对角线相等B对角线互相平分C对角线平分一组对角D对角

  • 2012.ppt

    A7. (2011四川绵阳174)如图将长8cm宽4cm的矩形纸片ABCD折叠使点A与C重合则折痕EF的长为_____ . (2011广东株洲238分)如图矩形ABCD中点P是线段AD上一动点O为BD的中点 PO的延长线交BC于Q.(1)求证: OP=OQ(2)若AD=8厘米AB=6厘米P从点A出发以1厘米秒的速度向D运动(不与D重合).设点P运动时间为t秒请

  • 证明.doc

    平行四边形及特殊的平行四边形1.已知:如图四边形ABCD是菱形过AB的中点E作AC的垂线EF交AD于点M交CD的延长线于点第1题图E(1)求证:AM=DM(2)若DF=2求菱形ABCD的周长.第2题图ADFCEGB2. 如图所示在中将绕点顺时针方向旋转得到点在上再将沿着所在直线翻转得到连接 (1)求证:四边形是菱形 (2)连接并延长交于连接请问:四边形是什么特殊平行四边形为什么EA

  • .doc

    特殊的平行四边形复习学案学习目标1理解矩形菱形正方形与平行四边形的关系2掌握特殊平行四边形的有关性质及判定方法并能应用所学知识解决相关问题基础练习1.下列性质中矩形具有而平行四边形不一定具有的是( )A对边相等 B对角相等 C对角线相等 D对边平行2.下面性质中菱形有而矩形没有的是( ) A邻角互补 B内角和为360°C对角线相等 D对角线

  • .doc

    #

  • .ppt

    平行四边形邻边相等角平行且相等互相平分二几种特殊四边形的性质:1两腰相等的梯形 2在同一底上的两角相等的梯形 3对角线相等的梯形要使四边形ABCD成为正方形需增加的条件是______请你说说把具有什么特点的四边形的各边中点连接起来能得到正方形呢ABCD于∠EN感悟与收获

违规举报

违法有害信息,请在下方选择原因提交举报


客服

顶部