大桔灯文库logo

下载提示:1. 本站不保证资源下载的准确性、安全性和完整性,同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
2. 本文档由用户上传,版权归属用户,大桔灯负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。

相关文档

  • 3.3--.ppt

    关键: 搞清复合函数结构 由外向内逐层求导.解练习:求下列复合函数的导数:求分段函数导函数时先求各分段子区间上初等函数的导数然后再讨论各分段点的可导性解正确解法:解对数求导法:函数求导小结—— 取对数求导法

  • .ppt

    单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级复习(一) 求导公式平顶山工学院平顶山工学院平顶山工学院(二) 求导法则即 反函数的导数等于直接函数导数的倒数.思考题1.求y=sin2x的导数提示:解解即一复合函数的求导法则定理即 因变量对自变量求导等于因变量对中间变量求导乘以中间变量对自变量求导.(链式法则)即或证证毕推广注意:可推广到有限次复合.如例1解例2解

  • .ppt

    单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级复合函数求导法则先回忆一下一元复合函数的微分法则则复合函数 对 x 的导数为 这一节我们将把这一求导法则推广到多元函数的情形主要介绍多元复合函数的微分法和隐函数的微分法我们知道求偏导数与求一元函数的导数本质上并没有区别对一元函数适用的微分法包括复合

  • .ppt

    相应链式图: 二抽象函数求(偏)导 作业习题6-4:34(1)(3)

  • .ppt

    #

  • 2-2.ppt

    单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级求 导 法 则目的与要求掌握导数运算法则和基本初等函数的求导公 式 能熟练的求初等函数的一阶二阶导数掌握复合函数的求导掌握隐函数所确定的函数的一二阶导数理解二阶导数的物理意义一和差积商的求导法则定理推论二例题分析例1解例2解例3解同理可得例4解同理可得例5解二复合函数的求导法则定理即 因变量对自变量求导

  • 多元.ppt

    单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级第四节 多元复合函数求导法则一多元复合函数求导的链式法则二多元复合函数的全微分一链式法则定理 且其导数可用下列公式计算则复合函数在对应点可导函数在对应点具有连续偏导数可导 如果函数及都在点一元复合函数求导法则证△t<0 时取–号 由于函数在点故可微即有连续偏导数例1 设 而其中

  • D9.4多元.ppt

    单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级高等数学目录 上页 下页 返回 结束 第4节一元复合函数求导法则本节内容:一多元复合函数求导的链式法则二多元复合函数的全微分微分法则多元复合函数的求导法则 第九章 一多元复合函数求导的链式法则定理. 若函数处偏导连续 在点 t 可导 则复合函数证: 设 t 取增量△t 则相应中间变量且有链式法则有增量△u △v

  • .doc

    一复合函数的求导法则 定理2 如果函数在点x处可导而函数对应的点处可导那么复合函数也在点处可导且有 或 = .证 当自变的改变量为时对应的函数与的改变量分别为和.由于函数可导即存在于是由无穷小与函数极限的关系有 其中是时的无穷小以乘以上式两边得于是 .因为在点处可导又根据函数在某点可导必在该点连续可知在点处也是连续的故有 .且当时从而.所以即 或记为 .上式

  • 2.2.doc

    复合函数求导法则一导入新课: 上节课我们学习了导数的概念性质几何意义和基本初等函数的求导公式本节课我们要介绍复合函数的求导方法二讲授新课:.1 复合函数的求导法则利用基本初等函数的导数公式和导数的四则运算只能够求一些比较简单的函数导数对比较复杂的复合函数还要利用复合函数的求导法则去求复合函数求导法则是求导的灵魂是求初等函数的导数所不可缺少的工具引例.1 前面我们已经指出利用导数的四则运算法则

违规举报

违法有害信息,请在下方选择原因提交举报


客服

顶部