由递推公式求数列通项的 几种常见的方法
#
#
#
#
数列 的前n项之和为Sn则Sn的值得等于( ) (A) (B) (C) (D) 两式相减: 14-n
求递推数列通项的特征根法一形如是常数)的数列 形如是常数)的二阶递推数列都可用特征根法求得通项其特征方程为…① 若①有二异根则可令是待定常数) 若①有二重根则可令是待定常数) 再利用可求得进而求得例1 已知数列满足求数列的通项解:其特征方程为解得令由得 例2已知数列满足求数列的通项解:其特征方程为解得令由得 二形如的数列 对于数列是常数且)
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级常见递推数列通项公式的求法1例1已知数列{an}的首项a1=1且an1=an2 求数
湖南长郡卫星远程学校2010年上学期制作 06常见递推数列通项公式的求法1.{an}的前项和Sn=2n2-1求通项an 公式法(利用an与Sn的关系 或利用等差等比数列的通项公式)an=S1 (n=1) Sn-Sn-1(n≥2)解:当n≥2时an=Sn-Sn-1=(2n2-1) -[2(n-1)2-1]
求递推数列通项的特征根法王新敞一形如是常数)的数列 形如是常数)的二阶递推数列都可用特征根法求得通项其特征方程为…① 若①有二异根则可令是待定常数) 若①有二重根则可令是待定常数) 再利用可求得进而求得例1 已知数列满足求数列的通项解:其特征方程为解得令由得 例2已知数列满足求数列的通项解:其特征方程为解得令由得 二形如的数列 对于数列是常数且)
违法有害信息,请在下方选择原因提交举报