二次根式(B卷)(60分钟 60分)一综合题:(每小题6分共30分) 1.计算下列各式:(1)()2 (2)(2)2. 2.已知:ab为有理数且满足=a2求3×的值. 3.若ab分别表示6-的整数部分和小数部分试求代数式2ab-b2的值. 4.若│2a-5b1│=0求a4b的值. 5.若m适合关系式=试确定m的值.二应用题(6分) 6.已知三角
二次根式(B卷)(综合应用创新能力提升训练题100分80分钟)一学科内综合题(每题10分共40分) 1.x取何值时下列各式有意义:(1)(2)(3)-(4)(x-6)0. 2.在实数范围内分解因式:(1)x4-9 (2)4x2-32 (3)x2-22 (4)x2-6x7. 3.若xy都是实数且满足y>1试化简代数式:│x-1│--.4.设等式-=-在实数范围内成立
二次根式的乘除(B卷)(综合应用创新能力提升训练题90分80分钟) 一学科内综合题(3题10分其余每题9分共37分)1.若ab为实数且满足│a-5│=8b-b2-16.求的值.2.设矩形的长为b宽为a对角线长为c面积为S. (1)若a=b=求cS(2)若a=S=求bc(3)若a=c=求bS.3.计算:(1)(-)(-)(2)(2)2008·(2-)2006.4.已知=求的值.二实际应用题(8
- 7 - 213 二次根式的加减(B卷)(60分钟60分)一、综合题(每小题6分,共30分)1.若3与最简根式2是同类二次根式,求a的值.2.已知+b=2,化简.3.已知x=-,y=+,求x2+xy+y2的值.4.已知a+b=,a-b=,求的值.5.实数x、y满足(-x)(-y)=1 997,求x+y的值.二、应用题(每小题6分,共12分)6.计算.7.计算.三、创新题(6分)8.试比较-
- 9 - 213 二根式的加减(B卷)(综合应用创新能力提升训练题,90分,70分钟)一、学科内综合题(每题8分,共32分)1.÷(1-)2.2.在长方形ABCD中,AD=,AB=1,E是AD上一点,且DE=-1,化简求值:+(-)÷,其中a=,b=.3.设a、b、c均为正整数,且=-,求a+b+c的算术平方根.4.已知a-b=+,b-c=-,求a2+b2+c2-ab-bc-ac的值.二、
二次根式(C卷) (课标新型题拔高训练50分40分钟)一开放题(10分)1.在日常生活中取款上网都需要密码有的人把自己的出生年月作为密码有的人把生活中的重要数字或自己认为吉利的数字作为密码这样很容易被知情人窃用有一种用二次根式法产生的密码如对二次根式计算的结果是11中间加一位数字0于是就得到一个六位数的密码121011对于二次根式用上述方法产生的密码是________请你参照上述方法自己设计一个
二次根式(A卷)(教材针对性训练题60分45分钟)一选择题(每题3分共18分) 1.下列各式中是二次根式的为( ) A. B. C. D. 2.下列判断正确的是( ) A.带根号的式子一定是二次根式 B.式子一定是二次根式 C.式子一定是二次根式 D.二次根式的值必定是无理数 3.若代数式是二次根式则( ) A.x是非负
二次根式二次根式知识网络:基础训练1.在中是二次根式的有 .2.如果是二次根式则的取值范围是 .3.如果是二次根式则的取值范围是 .4.已知一个圆形花坛的面积是50则它的半径等于 (保留2个有效数字).5.计算:= - .6.当 时7.一个等边三角形的边长为4则这个等边三角形的面积为
. 二次根式◆基础知识一选择题1(2007年浙江宁波市)实数范围内有意义则x的取值范围是( ) >1 ≥l <1 ≤12.已知一个正方形的面积是5那么它的边长是( ) B. C. D.以上皆不对3使式子有意义的未知数x有( )个.A.0
二次根式(A卷)(45分钟 60分)一选择题(每小题3分共21分) 1.下列各式中是二次根式的是( ) A. 2.若是二次根式则应满足的条件是( ) A.x≤2 B.x>2 C.x<2 D.x>0且x≠2 3.是二次根式则( ) A.a是正数 B.a是负数 C.a是非负数 D.a是非正数 4.下列说法中叙述
违法有害信息,请在下方选择原因提交举报