95 函数展开成幂级数
74函数展开成幂级数现考虑相反问题:即是否存在幂级数在其收敛域内以f(x)为和函数问:定理741(泰勒中值定理 )①其中②741泰勒级数泰勒级数与麦克劳林级数1定义2 f(x) 能展开成泰勒级数的条件 f(x) 能展开成麦克劳林级数的条件742函数展开成麦克劳林级数的方法1 直接展开法将函数f(x)展开成x的幂级数的一般步骤:所以随着展开式项数的增加,多项式越来越接近 所以利用已知函数的展开式,通
上节例题例1例3即例如1.如何求函数的泰勒级数
无穷级数证明三函数展开成泰勒级数的条件由于M的任意性注意:关健:解法取前三项作为积分的近似值得三个基本展开式
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级三幂级数的运算1. 代数运算性质:的收敛半径分别为R1设幂级数和R2 R=min{R1 R2}. 则(1) 加减法:的收敛半径为R.(2) 乘法:的收敛半径为R.(3) 除法:的收敛半径 ? R.在收敛域内2. 和函数的分析运算性质:(1) (连续性): 幂级数的和函数s(x)在收敛区间(-R R)内连续区间(-R R)内可积
展 开其中的某邻域内的某邻域内具有任意阶导数 f (x) 的泰勒公式中的余项满足:唯一的 且与它的麦克劳林级数相同.第一步 求函数及其各阶导数在 x = 0 处的值 0. 其收敛半径为 展开成 x 的幂级数.机动 目录 上页 下页 返回 结束 因此对任意常数 m 称为二项展开式 .机动 目录 上页 下页 返回 结束 得区间为解: 提示: 后者必需证明2. 将
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级第四节两类问题:在收敛域内和函数求 和展 开本节内容:一泰勒 ( Taylor ) 级数 二函数展开成幂级数 函数展开成幂级数 机动 目录 上页 下页 返回 结束 第十二章 一泰勒 ( Taylor ) 级数 其中( ? 在 x 与 x0 之间)称为拉格朗日余项 .则在若函数的某邻域内具有 n 1 阶
单击以编辑母版标题样式单击以编辑母版文本样式第二级第三级第四级第五级第四节两类问题:在收敛域内和函数求 和展 开本节内容:一泰勒 ( Taylor ) 级数 二函数展开成幂级数 函数展开成幂级数 机动 目录 上页 下页 返回 结束 第十一章 一泰勒 ( Taylor ) 级数 其中( ? 在 x 与 x0 之间)称为拉格朗日余项 .则在若函数的某邻域内具有 n 1 阶导数
求 和其中为f (x) 的泰勒级数 . 定理1 .二函数展开成幂级数 — 利用泰勒公式其收敛半径为 得级数:为任意常数 . 则例4. 将函数解: 例6. 将2. 如何求将下列函数展开成 x 的幂级数
125 函数展开成幂级数教学要求:记住常用函数的幂级数展开式并会用间接法将函数展开成幂级数 利用幂级数的性质(特别是性质 3 和性质4) 可以求出一些较为复杂的幂级数的和函数(利用幂级数的和函数又可以求出一些较为复杂的常数项级数的和) 这是属于由给出的幂级数求和函数的问题,其反问题为问题1:给定一个函数 f (x) (假定它在区间 ( a ,b ) 上具有任意阶导数),如何求出 f (x) 在
违法有害信息,请在下方选择原因提交举报