全等三角形辅助线常见辅助线的作法有以下几种:遇到等腰三角形可作底边上的高利用三线合一的性质解题思维模式是全等变换中的对折.遇到三角形的中线倍长中线使延长线段与原中线长相等构造全等三角形利用的思维模式是全等变换中的旋转.遇到角平分线可以自角平分线上的某一点向角的两边作垂线利用的思维模式是三角形全等变换中的对折所考知识点常常是角平分线的性质定理或逆定理.过图形上某一点作特定的平分线构造全等三角形
全等三角形常见辅助线做法(1)在△ABC中如AD是中线常采用的作法是:??? ①延长AD到E使DEAD连结BE(或过B作BE∥AC交AD的延长线于E)如图甲??? ②取AC的中点E连结DE(或过D作DE∥BA交AC于E)如图乙??? ③延长BA至E使AEAB连结CE(或过C作CE∥AD交BA的延长线于E)如图丙??? (2)在△ABC中若AD是∠BAC的平分线常采用的作法是:??? ①延长B
全等三角形中的常见辅助线一目的性的辅助线【知识整理】用全等三角形的方法证明两条线段或角相等或线段的和差倍分(1)作辅助线的目的是构建两个全等的三角形构建的两个三角形要尽量与要证明的线段有直接或间接的关系(2)辅助线的常用画法:①连接②作平行③作垂直④截取⑤延长相交⑥延长截取【基本题型】1. 已知:AB∥CDAD∥BC?????? 求证:ABCD 2.如图已知△ABC中ABACD在AB上E是A
常见全等三角形中添加辅助线方法(1)有角平分线时通常在角的两边截取相等的线段构造全等三角形例如:如图已知AD为△ABC的中线且∠1∠2∠3∠4求证:BECF>EF分析:要证BECF>EF 可利用三角形三边关系定理证明须把BECFEF移到同一个三角形中而由已知∠1∠2∠3∠4可在角的两边截取相等的线段利用三角形全等对应边相等把ENFNEF移到同一个三角形中(2)有以线段中点为端点的线段时常延长
全等三角形中的常见辅助线的添加方法举例有角平分线时通常在角的两边截取相等的线段构造全等三角形例:如图1:已知AD为△ABC的中线且∠1∠2∠3∠4求证:BECF>EF二有以线段中点为端点的线段时常延长加倍此线段构造全等三角形例::如图2:AD为△ABC的中线且∠1∠2∠3∠4求证:BECF>EF三有三角形中线时常延长加倍中线构造全等三角形例:如图3:AD为 △ABC的中线求证:ABAC>2A
全等三角形中常见辅助线的添加方法举例有角平分线时通常在角的两边截取相等的线段构造全等三角形例:如图1:已知AD为△ABC的中线且∠1∠2∠3∠4求证:BECF>EF二有以线段中点为端点的线段时常延长加倍此线段构造全等三角形例::如图2:AD为△ABC的中线且∠1∠2∠3∠4求证:BECF>EF三有三角形中线时常延长加倍中线构造全等三角形例:如图3:AD为 △ABC的中线求证:ABAC>2AD
全等三角形中常见辅助线的添加方法举例有角平分线时通常在角的两边截取相等的线段构造全等三角形例:如图1:已知AD为△ABC的中线且∠1∠2∠3∠4求证:BECF>EF二有以线段中点为端点的线段时常延长加倍此线段构造全等三角形例::如图2:AD为△ABC的中线且∠1∠2∠3∠4求证:BECF>EF三有三角形中线时常延长加倍中线构造全等三角形例:如图3:AD为 △ABC的中线求证:ABAC>2AD
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级全等三角形中的常见辅助线添加关于全等三角形辅助线 图中有角平分线可向两边作垂线 也可将图对折看对称以后关系现 角平分线平行线等腰三角形来添 角平分线加垂线三线合一试试看 线段垂直平分线常向两端把线连 要证线段倍与半延长缩短可试验 三角形中两中点连接则成中位线 三角形中有中线延长中线等中线 一倍长中线(线
全等三角形问题中常见的辅助线的作法三角形辅助线做法图中有角平分线可向两边作垂线 也可将图对折看对称以后关系现 角平分线平行线等腰三角形来添 角平分线加垂线三线合一试试看 线段垂直平分线常向两端把线连 要证线段倍与半延长缩短可试验 三角形中两中点连接则成中位线 三角形中有中线延长中线等中线常见辅助线的作法有以下几种:遇到等腰三角形可作底边上的高利用三线合一的性质解题思维模式是全等变换中的对折.
全等三角形性质1下面的说法:①全等三角形的形状相同②全等三角形的对应边相等③全等三角形的对应角相等④全等三角形的周长面积分别相等.说法正确的个数有( )A1个 B2个 C3个 D4个2下列说法中正确的是( )A全等三角形的角平分线相等 B全等三角形的中线相等 C全等三角形的高相等 D全等三角形的周长相等3如图△ABC≌△CDAAC=7cmAB=5
违法有害信息,请在下方选择原因提交举报