定值、最值问题1、如图,已知椭圆O:eq \f(x2,4)+y2=1的右焦点为F,点B,C分别是椭圆O的上、下顶点,点P是直线l:y=-2上的一个动点(与y轴交点除外),直线PC交椭圆于另一点M.(1)记直线BM,BP的斜率分别为k1,k2,求证:k1·k2为定值;(2)求的取值范围.解法一:①设,且,则直线PM的斜率为,则直线PM的方程为,联立化简得,解得, 所以,,所以为定值. ② 由①知
求值问题1.设分别为椭圆的左、右焦点,斜率为的直线经过右焦点,且与椭圆W相交于两点 (Ⅰ)求的周长; (Ⅱ)如果为直角三角形,求直线的斜率(Ⅰ)解:椭圆的长半轴长,左焦点,右焦点, …… 2分由椭圆的定义,得,,所以的周长为 ………… 5分(Ⅱ)解:因为为直角三角形,所以,或,或,当时,设直线的方程为,,, ………… 6分由 得 , ………… 7分所以 ,………… 8分由,得,……… 9分因为
专题8 最值与定值问题专题解读 最值问题是初中数学的重要内容具有较大的灵活性也是一类综合性较强的问题它贯穿初中数学的始终是中考的热点问题它主要考查学生对平时所学内容的综合运用能力关键要用数学思想方法为指导找准问题的切入点建立合适的解决问题的数学模型寻找解决问题的捷径从而把问题由难转化为易由复杂转化为简单使问题得到解决. 定值问题是指变动的图形中某些几何元素的几何量保持不
#
#
圆锥曲线的定点定值问题1已知平面内的动点到定直线:的距离与点到定点之比为.(1)求动点的轨迹的方程(2)若点N为轨迹上任意一点(不在x轴上)过原点O作直线AB交(1)中轨迹于点AB且直线ANBN的斜率都存在分别为问是否为定值 (3)若点M为圆O:上任意一点(不在x轴上)过M作圆O的切线交直线于点Q问MF与OQ是否始终保持垂直关系(第2题图)2已知椭圆的离心率为一条准线为若椭圆与轴交于两点是椭圆上异
几何的定值与最值几何中的定值问题是指变动的图形中某些几何元素的几何量保持不变或几何元素间的某些几何性质或位置关系不变的一类问题解几何定值问题的基本方法是:分清问题的定量及变量运用特殊位置极端位置直接计算等方法先探求出定值再给出证明.几何中的最值问题是指在一定的条件下求平面几何图形中某个确定的量(如线段长度角度大小图形面积)等的最大值或最小值求几何最值问题的基本方法有:1.特殊位置与极端位置法2.几
圆锥曲线的定点定值范围和最值问题定值问题:在几何问题中有些几何量与参数无关这就构成了定值问题解决这类问题一种思路是进行一般计算推理求出其结果另一种是通过考查极端位置探索出定值是多少然后再进行一般性证明或计算即将该问题涉及的几何式转化为代数式或三角形式证明该式是恒定的.如果试题以客观题形式出现特殊方法往往比较奏效.1已知椭圆上的两个动点及定点 为椭圆的左焦点且成等差数列.求证:线段的垂直平分线
#
#
违法有害信息,请在下方选择原因提交举报