132 奇偶性第一课时 函数的奇偶性问题提出 1研究函数的基本性质不仅是解决实际问题的需要,也是数学自身发展的必然结果 例如事物的变化趋势,利润最大、效率最高等,这些特性反映在函数上,就是要研究函数的单调性及最值 2我们从函数图象的升降变化引发了函数的单调性,从函数图象的最高点最低点引发了函数的最值,如果从函数图象的对称性出发又能得到什么性质?函数的奇偶性知识探究(一)思考1:这两个函数的图象分别
函数的奇偶性函函数的奇偶性数的奇偶性一、概念:对于函数f(x)的定义域内任意一个x如果都有f(-x)=f(x),则函数f(x)叫做偶函数。任意任意任意都有都有都有都有都有∵当x=3时,f(3)=9,但f(-3)不存在, 不符合偶函数的定义∴f(x)不是偶函数函数f(x)=x2, x∈(-3,3]是不是偶函数?任意任意(2) f(-x)=f(x)思考:(必要) 练习: 已知:函数f(x)=x 3 ,
3函数单调性1.函数单调性的定义2.证明函数单调性3.求函数的单调区间4.利用函数单调性解决一些问题5.抽象函数与函数单调性结合运用典例分析:一函数单调性的证明:例1:证明函数 在 上是减函数二 函数单调性的判断例2.画出下列函数图象并写出函数的单调区间(1) (2) (3) (4)(5) (6)三 函数单调性的应用 例3:若函数在区
宿迁经贸高等职业技术学校教 师 教 案 本( — 学年 第 学期)精神振奋 信心坚定德技双馨 特点鲜明 专业名称 课程名称 授课教师 授课班级 系 部 : 课题名称函数
-34P(-xf(-x))判断下列函数是不是偶函数练习-3 0-3 思考
函数的奇偶性(1)复习回顾与情境创设:说出下列函数的单调性:在(0,+?)上是增函数.在(-?,0)上是减函数;y 我们从这两个函数的图象上除看到了单调性,还能看到什么性质吗?如何用数学语言来刻画这一几何性质呢?(1)f(x) =x2-2(2)f(x) =在(0,+?)上也是减函数.在(-?,0)上是减函数;(2)f(x) =偶函数、奇函数的定义例 1判断下列函数是否为偶函数或奇函数例2判断函数
(2)偶函数的图象关于y轴对称.奇函数一个函数为偶函数 它的图象关于y 轴对称1已知f(x)是偶函数在(0∞)上是增函数比较 与 的大小
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级1.3.2 奇偶性 第一课时 函数的奇偶性问题提出 1.研究函数的基本性质不仅是解决实际问题的需要也是数学自身发展的必然结果. 例如事物的变化趋势利润最大效率最高等这些特性反映在函数上就是要研究函数的单调性及最值. 2.我们从函数图象的升降变化引发了函数的单调性从函数图象的最高点最低点引发了函数的最值如果从函
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级1.3.2奇偶性函数的奇偶性的概念黄进f(x)=x2f(x)=x观察f(x)=x2观察 一般地对于函数f(x)的定义域内的任意一个x都有f(-x)=f(x)那么f(x)就叫做偶函数. 偶函数例 已知函数y=f(x)是偶函数它在y轴右边的图象如下图画出在y轴左边的图象.xy0相等观察 一般地对于函数f(x)的
#
违法有害信息,请在下方选择原因提交举报