过定点直线有几条 翟洪亮 我们知道:从一个角的顶点出发的一条射线如果把这个角分成相等的角这条射线叫做这个角的平分线类似的从一个二面角的顶点出发的一个半平面如果把这个二面角的平面角分成相等的角这个半平面叫做这个二面角的角平分面 角平分线的性质是:角平分线上的任意一点到角两边的距离相等同样可推得角平分面的性质:角平分面内的任意一条直线与两个半平面所成角是相等的 例1. 已知平面α与β
1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中垂线段最短 7 平行公理 经过直线外一点有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行这两条直线也互相平行 9 同位角相等两直线平行 10 内错角相等两直线平行 11 同旁内角互补两直线平
1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中 垂线段最短 7 经过直线外一点 有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行 这两条直线也互相平行 9 同位角相等 两直线平行 10 内错角相等 两直线平行 11 同旁内角互补
#
#
锁定过定点的直线 陕西汉中市405学校 侯有岐 723312直线是解析几何的基本内容求过一定点的直线方程是直线部分重要题型之一.本文通过实例谈谈过一定点的直线方程的求法供同学们参考.过定点与截距有关的直线方程的求法例1: 求过定点P(13) 且在两坐标轴上截距相等的直线方程.分析: 由题意同学们很容易将直线方程设为截距式这样就把直线过原点的情况给遗漏了
定点定直线定值专题1已知椭圆的中心在坐标原点焦点在轴上椭圆上的点到焦点距离的最大值为最小值为.(Ⅰ)求椭圆的标准方程(Ⅱ)若直线与椭圆相交于两点(不是左右顶点)且以为直径的圆过椭圆的右顶点求证:直线过定点并求出该定点的坐标.【标准答案】(I)由题意设椭圆的标准方程为 (II)设由得.以AB为直径的圆过椭圆的右顶点(最好是用向量点乘来)解得且满足.当时直线过定点与已知矛盾当时直线过定点综上可知
圆锥曲线中动直线过定点问题老师:目录/DIRECTORY123动直线过定点的总体思路解决动直线恒过定点的两种方法例题解析(1)动直线过定点的总体思路(1)动直线过定点的总体思路(2)解决动直线过定点的两种方法(2)解决动直线过定点的两种方法(2)解决动直线过定点的两种方法(2)解决动直线过定点的两种方法(3)例题解析(3)例题解析(3)例题解析(3)例题解析(3)例题解析
圆锥曲线中的定点定直线定值问题例题分析1已知椭圆的中心在坐标原点焦点在轴上椭圆上的点到焦点距离的最大值为最小值为.(1)求椭圆的标准方程(2)若直线与椭圆相交于两点(不是左右顶点)且以为直径的圆过椭圆的右顶点求证:直线过定点并求出该定点的坐标.2已知椭圆C的离心率长轴的左右端点分别为(1)求椭圆C的方程(2)设直线与椭圆C交于PQ两点直线与交于点S试问:当m变化时点S是否恒在一条定直线上若是
1.已知椭圆的中心在坐标原点焦点在轴上椭圆上的点到焦点距离的最大值为最小值为.(Ⅰ)求椭圆的标准方程(Ⅱ)若直线与椭圆相交于两点(不是左右顶点)且以为直径的圆过椭圆的右顶点求证:直线过定点并求出该定点的坐标.【标准答案】(I)由题意设椭圆的标准方程为 (II)设由得.以AB为直径的圆过椭圆的右顶点(最好是用向量点乘来)解得且满足.当时直线过定点与已知矛盾当时直线过定点综上可知直线过定点定点坐
违法有害信息,请在下方选择原因提交举报