大桔灯文库logo

下载提示:1. 本站不保证资源下载的准确性、安全性和完整性,同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
2. 本文档由用户上传,版权归属用户,大桔灯负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。

相关文档

  • 2.doc

    #

  • -2.doc

    #

  • .ppt

    由递推公式求数列通项的 几种常见的方法

  • 法.pdf

    #

  • 各种解方法大全(2).doc

    递推数列通项求解方法类型一:()思路1(递推法):………思路2(构造法):设即得数列是以为首项为公比的等比数列则即例1 已知数列满足且求数列的通项公式类型二: 思路1(递推法):…思路2(叠加法):依次类推有:…将各式叠加并整理得即例2 已知求类型三: 思路1(递推法):……思路2(叠乘法):依次类推有:…将各式叠乘并整理得…即…例3 已知求类型四: 思路(特征根法):为了方便我们先

  • 技巧公式特征根法.doc

    求递推数列通项的特征根法一形如是常数)的数列 形如是常数)的二阶递推数列都可用特征根法求得通项其特征方程为…① 若①有二异根则可令是待定常数) 若①有二重根则可令是待定常数) 再利用可求得进而求得例1 已知数列满足求数列的通项解:其特征方程为解得令由得 例2已知数列满足求数列的通项解:其特征方程为解得令由得 二形如的数列 对于数列是常数且)

  • 公式的法.ppt

    #

  • 的特征根法.doc

    求递推数列通项的特征根法王新敞一形如是常数)的数列 形如是常数)的二阶递推数列都可用特征根法求得通项其特征方程为…① 若①有二异根则可令是待定常数) 若①有二重根则可令是待定常数) 再利用可求得进而求得例1 已知数列满足求数列的通项解:其特征方程为解得令由得 例2已知数列满足求数列的通项解:其特征方程为解得令由得 二形如的数列 对于数列是常数且)

  • 公式公式.doc

    数列通项公式的求法综述法一形如 数列通项公式——迭加法[例1]在数列中求[练习1](c为常数)成公比不为1的等比数列求法二形如 (或)——递推作差法-[例2]数列的前n项和为Sn且求[练习2]已知求法三形如 ——累积法×[例3]在中求[练习3]在中求法四形如 ——用除法÷ ——同除以[例4]已知求[练习4]已知求练习:已知求(07天津)法五形如 ——取对法[例5]已知求[练习]已

  • 公式公式.doc

    由数列递推公式求通项公式的求解策略一般地如果已知数列的第1项(或前几项)且任一项与它的前一项(或前几项)间的关系可以用一个公式来表示那么这个公式就叫做这个数列的递推公式.由递推公式给出的数列称之为递推数列.等差等比数列实际上就是最简单的递推数列.求递推数列的通项的方法较为灵活本文归纳涉及递推数列的常用解题方法及技巧一直接构成等差等比数列 例1.已知数列递推公式求数列通项公式二迭加法(或迭乘法

违规举报

违法有害信息,请在下方选择原因提交举报


客服

顶部