单调性与最大(小)值《函数的单调性与最大(小)值}》系人教A版高中数学必修第一册第三章第二节的内容本节包括函数的单调性的定义与判断及其证明函数最大(小)值的求法在初中学习函数时借助图像的直观性研究了一些函数的增减性这节内容是初中有关内容的深化延伸和提高函数的单调性是函数众多性质中的重要性质之一函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续它和后面的函数奇偶性合称为函数
【新教材】 单调性与最大(小)值(人教A版)《函数的单调性与最大(小)值》是高中数学新教材第一册第三章第2节的内容在此之前学生已学习了函数的概念定义域值域及表示法这为过渡到本节的学习起着铺垫作用学生在初中已经学习了一次函数二次函数反比例函数的图象在此基础上学生对增减性有一个初步的感性认识所以本节课是学生数学思想的一次重要提高函数单调性是函数概念的延续和拓展又是后续研究指数函数对数函数等内容的基础对
§ 单调性与最大(小)值(1)【 学习目标 】1. 通过已学过的函数特别是二次函数理解函数的单调性及其几何意义2. 能够熟练应用定义判断数在某区间上的单调性3. 学会运用函数图象理解和研究函数的性质.【 学习过程】 一【课前自主学习】(预习教材P27 P29找出疑惑之处)引言:函数是描述事物运动变化规律的数学模型那么能否发现变化中保持不变的特征呢复习1:观察下列各个函数的图象.探讨下列变化
课题:必修1§单调性与最大(小)值(第一课时导学案)濮阳外国语学校 高一数学组【方向标】1.使学生理解函数单调性的概念并能判断一些简单函数在给定区间上的单调性.2.通过函数单调性概念的教学培养学生分析问题认识问题的能力.通过例题培养学生利用定义进行推理的逻辑思维能力.【路线图】〖自主学习〗请同学们观察下面两组在相应区间上的函数然后指出这两组函数之间在性质上的主要区别是什么(用投影幻灯给出
§ 单调性与最大(小)值(1) 学习目标 1. 理解函数的单调性及其几何意义2. 能够熟练应用定义判断数在某区间上的单调性3. 学会运用函数图象理解和研究函数的性质. 学习过程 复习1:观察下列各个函数的图象.探讨下列变化规律:① 随x的增大y的值有什么变化② 能否看出函数的最大最小值③ 函数图象是否具有某种对称性二新课导学※ 学习探究探究任务:单调性相关概念新知:设函数y=f(x)的定义
3.2.1 函数的单调性与最大(小)值1.理解增函数减函数单调区间单调性概念2.掌握增(减)函数的证明与判断3.能利用单调性求函数的最大(小)值4.学会运用函数图象理解和研究函数的性质1.教学重点:函数单调性的概念函数的最值2.教学难点:证明函数的单调性求函数的最值1增函数与减函数的定义: 一般地设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x1x2当x1<x
函数的基本性质.1 单调性与最大(小)值第1课时一创设情境引入课题由于北京奥运会开幕式当天气温变化原因2008年北京奥运会开幕式时间由原定的7月25日推迟到8月8日北京的天气到8月中旬平均气温平均降雨量和平均降雨天数等均开始下降比较适宜举办大型国际体育赛事下图是北京市某年8月8日一天24小时内气温随时间变化的曲线图图1 想一想议一议 (1)观察图象你能说出图象的特征吗随x的增大y的值有
《1.3.1单调性与最大(小)值(1)》导学案主编人:彭小武 班次 【学习目标】其中23是重点和难点1. 通过已学的函数特别是二次函数理解函数单调性的本质内容和函数单调性的几何意义2. 掌握判断函数单调性的判断方法:定义法和图象法学会运用函数图象研究函数的性质3. 能够熟练的掌握用定义法证明函数单调性及其步骤.【课前导学】阅读
单调性与最大(小)值(一) 学习目标1通过已学的函数特别是二次函数理解函数单调性的本质内容和函数单调性的几何意义 2掌握判断函数单调性的判断方法:定义法和图象法学会运用函数图象研究函数的性质 3能够熟练的掌握用定义法证明函数单调性及其步骤.学习重点:函数单调性的概念用定义法证明函数单调性及其步骤学习过程:一自
【新教材】 单调性与最大(小)值(人教A版)1理解增函数减函数的概念及函数单调性的定义2会根据单调定义证明函数单调性3理解函数的最大(小)值及其几何意义4学会运用函数图象理解和研究函数的性质.重点:1函数单调性的定义及单调性判断和证明2利用函数单调性或图像求最值.难点:根据定义证明函数单调性.预习导入阅读课本76-80页填写增函数减函数的定义2单调性与单调区间如果函数yf(x)在区间D上是增函数或
违法有害信息,请在下方选择原因提交举报