#
高二数学选修2-1第二章椭圆练习卷班级 座号 一选择题:1.(2009陕西卷文)是方程表示焦点在y轴上的椭圆的 (A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件 (D) 既不充分也不必要条件 2.(天津卷)设椭圆()的
2014年高考真题题型分析——椭圆一椭圆的几何性质1.(2014辽宁5分)(2014?辽宁)已知椭圆C:=1点M与C的焦点不重合若M关于C的焦点的对称点分别为AB线段MN的中点在C上则ANBN= _________ .二椭圆与参数方程2.(2014福建5分)设PQ分别为圆x2(y﹣6)2=2和椭圆y2=1上的点则PQ两点间的最大距离是( ) A.5B.C.7D.6三椭圆与直线(交点比例向量
高考椭圆经典题目前程辅导1.(2010·广东高考文科·T7)若一个椭圆长轴的长度短轴的长度和焦距成等差数列则该椭圆的离心率是( ) A. B. C. D.【思路点拨】由椭圆长轴的长度短轴的长度和焦距成等差数列列出的关系再转化为间的关系从而求出.【规范解答】选. 椭圆长轴的长度短轴的长度和焦距成等差数列 即: 又 即 (舍去)或 故选.2.(20
#
20082009高考题选编1.(2008北京卷理19)已知菱形的顶点在椭圆上对角线所在直线的斜率为1.(Ⅰ)当直线过点时求直线的方程(Ⅱ)当时求菱形面积的最大值.解:(Ⅰ)由题意得直线的方程为.因为四边形为菱形所以.于是可设直线的方程为.由得.因为在椭圆上所以解得.设两点坐标分别为则.所以.所以的中点坐标为.由四边形为菱形可知点在直线上 所以解得.所以直线的方程为即.(Ⅱ)因为四边形为菱形且
#
椭圆部分周末测试题选择题:(本大题共10小题每小题6分共60分) 得分 1.离心率为长轴长为6的椭圆的标准方程是( ) (A) (B)或 (C) (D)或2.动点P到两个定点(- 40).(40)的距离之和为8则P点的轨迹为( ) A.椭圆 B.线段 C
- 6 - 2006年中考数学题分类之--圆一、选择题:1.(2006年浙江省绍兴市) 如图1,已知⊙0的直径AB与弦AC的夹角为350,过C点的切线PC与AB的延长线交于点P,则么∠P等于(B)A.150B.200C.250D.300 (1)(2) (3)2.(2006年重庆市)⊙O的半径为4,圆心O到直线的距离为3,则直线与⊙O的位置关系是(A ) A相交 B相切 C相离 D 无法确定3
椭圆练习2一选择题1.椭圆eq f(x2m-2)eq f(y2m5)1的焦点坐标是( )A.(±70) B.(0±7) C.(±eq r(7)0) D.(0±eq r(7))答案 D解析 因为m5>m-2所以椭圆的焦点在y轴上方程化为标准形式为:eq f(y2m5)eq f(x2m-2)1其中a2m5b2m-2∴c
违法有害信息,请在下方选择原因提交举报