- 3 - 312 两角和与差的正弦一、课题:两角和与差的正弦二、教学目标:1能推导,的诱导公式,并能灵活运用;2掌握公式的推导,并能熟练进行公式正逆向运用。三、教学重点:公式及诱导公式的推导、运用;四、教学难点:公式及诱导公式的运用。五、教学过程:(一)复习: 1.公式;2.练习: 化简:(1);(2);(3).(二)新课讲解:1.诱导公式(1);(2)把公式(1)中换成,则.即: .2.
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级执教人 成武 刘化斌 两角和与差的 正弦余弦正切公式问题: 由两角差的余弦公式怎样得到 两角差的正弦公式呢公式应用巩固练习1 已知2 已知3 已知化简小结作业 习题3.1 3 8 10 谢谢
两角和与差的正弦正切一复习:cos(? ? )=cos? cos? – sin? sin?cos (? –? )=cos? cos? sin?sin?二公式的推导两角和与差的正弦公式1两角和的余弦公式2两角差的余弦公式简记:简记:两角和的正切公式:上式中以??代?得 注意: 1?必须在定义域范围内使用上述公式 2?注意公式的结构尤其是符号即:tan?tan?tan(?±?)只要有一个不
3.1.2 两角和与差的正弦余弦正切公式整体设计一教学分析1.两角和与差的正弦余弦正切公式是在研究了两角差的余弦公式的基础上进一步研究具有两角和差关系的正弦余弦正切公式的.在这些公式的推导中教科书都把对照比较有关的三角函数式认清其区别寻找其联系和联系的途径作为思维的起点如比较cos(α-β)与cos(αβ)它们都是角的余弦只是角形式不同但不同角的形式从运算或换元的角度看都有内在联系即αβ=α-(
3.1.2两角和差的正弦公式教学目的:1掌握两角和与差的正弦余弦公式. 2能用公式进行简单的求值. 3培养学生的创新意识与应用意识.教学重点:两角和与差的正弦余弦公式及其简单应用. 教学难点:1两角和余弦与两角差余弦之间的关系 2两角和差正弦与相应的余弦之间的关系. 教学过程:复习两角和差的余弦公式 : cos()=coscossins
マスタ タイトルの書式設定22?注意公式的结构尤其是符号小结例1
- 2 - 311两角和与差的余弦一、课题:两角和与差的余弦二、教学目标:1.掌握两点间的距离公式及其推导;2.掌握两角和的余弦公式的推导;3.能初步运用公式来解决一些有关的简单的问题。三、教学重点:两点间的距离公式及两角和的余弦公式的推导。四、教学难点:两角和的余弦公式的推导。五、教学过程:(一)复习:1.数轴两点间的距离公式:.2.点是终边与单位圆的交点,则.(二)新课讲解:1.两点间的距
PAGE PAGE 43. 1.2 两角和与差的正弦余弦正切公式三维目标1.在学习两角差的余弦公式的基础上通过让学生探索发现并推导两角和与差的正弦余弦正切公式了解它们之间的内在联系并通过强化题目的训练加深对公式的理解培养学生的运算能力及逻辑推理能力从而提高解决问题的能力.2.通过两角和与差的正弦余弦正切公式的运用会进行简单的求值化简恒等证明使学生深刻体会联系变化的观点自觉地利用联
两角和与差的正弦余弦正切公式班级 日期 温馨提示:用心去倾注.用脑去思考.用行动去演绎你的数学人生 重点难点重点:两角和与差公式的应用和旋转变换公式难点:两角和与差公式变aSinabCosa为一个角的三角函数的形式二教学大家首先回顾一下两角和与差的余弦公式:.则: =
两角和与差的正弦余弦 正切公式一[复习回顾承上启下]复习:猜想:Cosαcosβsin α sinβCosαcosβ-sin α sinβsin α cosβ-Cosα sinβsin α cosβCosα sinβ二[学生探索揭示规律]sin α cosβ-Cosα sinβ三[运用规律解决问题]五[变式演练深化提高]七[作业
违法有害信息,请在下方选择原因提交举报